OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 2 — Feb. 1, 2008
  • pp: 223–235

Large nonlinear refraction in InSb at 10 μ m and the effects of Auger recombination

V. Dubikovskiy, D. J. Hagan, and E. W. Van Stryland  »View Author Affiliations


JOSA B, Vol. 25, Issue 2, pp. 223-235 (2008)
http://dx.doi.org/10.1364/JOSAB.25.000223


View Full Text Article

Enhanced HTML    Acrobat PDF (499 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Narrow bandgap semiconductors exhibit very large optical nonlinearities in the infrared owing to large two-photon absorption that scales as the inverse cube of the bandgap energy and the large losses and refraction from two-photon generated free carriers. Except for extremely short pulses, the free-carrier effects dominate the nonlinear losses and nonlinear refraction. Here we develop a method for the calculation of the free-electron refraction cross section in InSb. We also calculate the Auger recombination coefficient in InSb and find it to be in good agreement with existing experimental data. In all the calculations we rely on Fermi–Dirac statistics and use a four-band k⋅p theory for band structure calculations. Experiments on the transmission of submicrosecond C O 2 laser pulses through InSb produce results consistent with the calculated parameters.

© 2008 Optical Society of America

OCIS Codes
(020.4180) Atomic and molecular physics : Multiphoton processes
(190.0190) Nonlinear optics : Nonlinear optics
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW

ToC Category:
Nonlinear Optics

History
Original Manuscript: October 15, 2007
Revised Manuscript: December 11, 2007
Manuscript Accepted: December 12, 2007
Published: January 29, 2008

Citation
V. Dubikovskiy, D. J. Hagan, and E. W. Van Stryland, "Large nonlinear refraction in InSb at 10 μm and the effects of Auger recombination," J. Opt. Soc. Am. B 25, 223-235 (2008)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-25-2-223


Sort:  Year  |  Journal  |  Reset  

References

  1. D. A. Miller, C. T. Seaton, M. E. Prise, and S. D. Smith, "Band-gap-resonant nonlinear refraction in III-V semiconductors," Phys. Rev. Lett. 47, 197-200 (1981). [CrossRef]
  2. E. W. Van Stryland, M. A. Woodall, H. Vanherzeele, and M. J. Soileau, "Energy band-gap dependence of two-photon absorption," Opt. Lett. 10, 490-492 (1985). [CrossRef] [PubMed]
  3. B. S. Wherrett, "Scaling rules for multiphoton interband absorption in semiconductors," J. Opt. Soc. Am. B 1, 67-72 (1984). [CrossRef]
  4. E. W. Van Stryland, H. Vanherzeele, M. A. Woodall, M. J. Soileau, A. L. Smirl, S. Guha, and T. F. Boggess, "Two photon absorption, nonlinear refraction, and optical limiting in semiconductors," Opt. Eng. (Bellingham) 24, 613-623 (1985).
  5. M. Sheik-Bahae, P. Mukherjee, and H. S. Kwok, "Two-photon and three-photon absorption coefficients of InSb," J. Opt. Soc. Am. B 3, 379-385 (1986). [CrossRef]
  6. M. Sheik-Bahae, T. Rossi, and H. S. Kwok, "Frequency dependence of the two-photon absorption coefficient in InSb: tunneling effects," J. Opt. Soc. Am. B 4, 1964-1969 (1987). [CrossRef]
  7. E. Van Stryland and L. Chase, "Two photon absorption: inorganic materials," in Handbook of Laser Science and Technology; Supplement 2: Optical Materials, Sec. 8, M.Weber, ed. (CRC Press, 1994), pp. 299-328.
  8. S. W. Kurnick and J. M. Powell, "Optical absorption in pure single crystal InSb at 298 and 78 K," Phys. Rev. 116, 597-604 (1959). [CrossRef]
  9. M. P. Hasselbeck, E. W. Van Stryland, and M. Sheik-Bahae, "Dynamic band unblocking and leakage two-photon absorption in InSb," Phys. Rev. B 56, 7395-7403 (1997). [CrossRef]
  10. V. Chazapis, H. A. Blom, K. L. Vodopyanov, A. G. Norman, and C. C. Phillips, "Midinfrared picosecond spectroscopy studies of Auger recombination in InSb," Phys. Rev. B 52, 2516-2521 (1995). [CrossRef]
  11. P. T. Landsberg, Recombination in Semiconductors (Cambridge U. Press, 1991).
  12. A. R. Beattie, "Auger transitions in semiconductors and their computation," J. Phys. C 18, 6501-6515 (1985). [CrossRef]
  13. P. T. Landsberg and A. R. Beattie, "Auger effect in semiconductors," J. Phys. Chem. Solids 8, 73-75 (1959). [CrossRef]
  14. C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, 1996).
  15. A. Haug, "Carrier density dependence of Auger recombination," Solid-State Electron. 21, 1281-1284 (1978). [CrossRef]
  16. M. Combescot and R. Combescot, "Auger recombination in direct-gap semiconductors: effect of anisotropy and warping," Phys. Rev. B 37, 8781-8790 (1988). [CrossRef]
  17. M. G. Burt, S. Brand, C. Smith, and R. A. Abram, "Overlap integrals for Auger recombination in direct-bandgap semiconductors: calculation for conduction and havy-hole bands in GaAs and InP," J. Phys. C 17, 6385-6401 (1984). [CrossRef]
  18. M. Takeshima, "Auger recombination in InAs, GaSb, InP, and GaAs," J. Appl. Phys. 43, 4114-4119 (1972). [CrossRef]
  19. E. O. Kane, "Band structure of indium antimonide," J. Phys. Chem. Solids 1, 249-261 (1957). [CrossRef]
  20. M. Cardona and F. H. Pollak, "Energy-band structure of germanium and silicon: the k⋅p method," Phys. Rev. 142, 530-543 (1966). [CrossRef]
  21. J. R. Chelikowski and M. L. Cohen, "Nonlocal pseudopotential calculations of the electronic structure of eleven diamond and zinc-blend semiconductors," Phys. Rev. B 14, 556-582 (1976). [CrossRef]
  22. P. Scharoch and R. A. Abram, "A method for determining the overlap integrals used in calculations of Auger transition rates in semiconductors," Semicond. Sci. Technol. 3, 973-978 (1988). [CrossRef]
  23. P. O. Lowdin, "A note on the quantum-mechanical perturbation theory," J. Chem. Phys. 19, 1396-1401 (1951). [CrossRef]
  24. A. R. Beattie, R. A. Abram, and P. Scharoch, "Realistic evaluation of impact ionisation and Auger recombination rates for ccch transition in InSb and InGaAsP," Semicond. Sci. Technol. 5, 738-744 (1990). [CrossRef]
  25. A. R. Beattie and A. M. White, "An analytic approximation with a wide range of applicability for electron initiated Auger transitions in narrow-gap semiconductors," J. Appl. Phys. 79, 802-813 (1996). [CrossRef]
  26. M. E. Flatte, C. H. Grein, T. C. Hasenberg, S. A. Anson, D. J. Jang, J. T. Olesberg, and T. F. Boggess, "Carrier recombination rates in narrow-gap InAs/Ga1−xInxSb-based superlattices," Phys. Rev. B 59, 5745-5750 (1999). [CrossRef]
  27. A. Haug, "Auger recombination in direct-gap semiconductors: band-structure effects," J. Phys. C 16, 4159-4172 (1983). [CrossRef]
  28. L. A. Almazov, A. I. Liptuga, V. K. Malyutenko, and L. L. Fedorenko, Fiz. Tekh. Poluprovodn. (S.-Peterburg) 14, 1940 (1980) L. A. Almazov, A. I. Liptuga, V. K. Malyutenko, and L. L. Fedorenko,[Sov. Phys. Semicond. 14, 1154 (1980)].
  29. D. Yevick and W. Bardyszewski, "An introduction to non-equilibrium many-body analyses of optical processes in III-IV semiconductors," in Semiconductors and Semimetals, R.K.Willardson and A.C.Beer, eds. (Academic, 1993), Vol. 39, pp. 318-388.
  30. M. Sheik-bahae, D. J. Hagan, and E. W. Van Stryland, "Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption," Phys. Rev. Lett. 65, 96-99 (1989). [CrossRef]
  31. M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, "Dispersion of bound electronic nonlinear refraction in solids," IEEE J. Quantum Electron. QE-27, 1296-1309 (1991). [CrossRef]
  32. W. Zawadzki, "Electron transport phenomena in small-gap semiconductors," Adv. Phys. 23, 435-522 (1974). [CrossRef]
  33. K. Seeger, Semiconductor Physics. An Introduction, 3rd ed. (Springer-Verlag, 1985).
  34. B. S. Werrett, A. C. Walker, and F. A. P. Tooley, Optical Nonlinearities and Instabilities in Semiconductors (Academic, 1988), pp. 239-272.
  35. A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young, and E. W. Van Stryland, "Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe," J. Opt. Soc. Am. B 9, 405-414 (1992). [CrossRef]
  36. E. J. Johnson, "Absorption near the fundamental edge," in Semiconductors and Semimetals, R.K.Willardson and A.C.Beer, eds. (Academic, 1967), Vol. 3, pp. 153-258. [CrossRef]
  37. V. Dubikovskiy, "Optical limiting: numerical modeling and experiment," Ph.D. dissertation (University of Central Florida, 2003).
  38. N. V. Tabiryan, B. Ya. Zel'dovich, M. Kreuzer, T. Vogeler, and T. Tschudi, "Higher-dimensionality caustics owing to competing reorientation of a liquid crystal by laser beams," J. Opt. Soc. Am. B 13, 1426-1969 (1996). [CrossRef]
  39. D. I. Kovsh, S. Yang, D. J. Hagan, and E. W. Van Stryland, "Nonlinear optical beam propagation for optical limiting," Appl. Opt. 38, 5168-5180 (1999). [CrossRef]
  40. F. E. Hernández, S. Yang, E. W. Van Stryland, and D. J. Hagan, "High dynamic range cascaded-focus optical limiter," Opt. Lett. 25, 1180-1182 (2000). [CrossRef]
  41. M. Mohebi, P. F. Aiello, G. Reali, M. J. Soileau, and E. W. Van Stryland, "Self-focusing in CS2 at 10.6 μm," Opt. Lett. 10, 396 (1985). [CrossRef] [PubMed]
  42. The authors recently became aware of a recent publication by S. Krishnamurthy, Z. G. Yu, L. P. Gonzalez, and S. Guha, "Accurate evaluation of nonlinear absorption coefficients in InAs, InSb, and HgCdTe alloys," J. Appl. Phys. 101, 113104 (2007); these results are consistent with those reported herein. [CrossRef]
  43. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes in C. The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, 1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited