OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 2 — Feb. 1, 2008
  • pp: 236–246

Influence of losses on the superresolution performances of an impedance-matched negative-index material

Giuseppe D’Aguanno, Nadia Mattiucci, and Mark J. Bloemer  »View Author Affiliations

JOSA B, Vol. 25, Issue 2, pp. 236-246 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (998 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We discuss by a Poynting vector analysis how the losses of a negative-index material (NIM) affect the resolution performances of a Veselago–Pendry lens, and we analyze those performances in the framework of the Abbe criterion. The limits of both high losses and low losses are explored. We find that the impedance-matched NIM is able to resolve 30% better than the limit imposed by the Abbe criterion even when the imaginary part of the refractive index (the material losses) exceeds the absolute value of the real part of the refractive index. The NIM is described by a lossy Drude model with equal permittivity and permeability. By increasing the damping parameter of the Drude model, we also explore the regime where both permittivity and permeability are positive and point out the conditions under which the metamaterial is still able to superresolve.

© 2008 Optical Society of America

OCIS Codes
(260.1960) Physical optics : Diffraction theory
(160.3918) Materials : Metamaterials
(180.4243) Microscopy : Near-field microscopy

ToC Category:

Original Manuscript: September 6, 2007
Revised Manuscript: November 21, 2007
Manuscript Accepted: November 25, 2007
Published: January 29, 2008

Giuseppe D'Aguanno, Nadia Mattiucci, and Mark J. Bloemer, "Influence of losses on the superresolution performances of an impedance-matched negative-index material," J. Opt. Soc. Am. B 25, 236-246 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of epsi and μ," Sov. Phys. Usp. 10, 509-514 (1968). [CrossRef]
  2. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000) and references therein. [CrossRef] [PubMed]
  3. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001). [CrossRef] [PubMed]
  4. C. G. Parazzoli, R. B. Greegor, K. Li, K. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell's law," Phys. Rev. Lett. 90, 107401-1-4 (2003). [CrossRef] [PubMed]
  5. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100 terahertz," Science 306, 1351-1353 (2004). [CrossRef] [PubMed]
  6. G. D'Aguanno, N. Mattiucci, M. Scalora, and M. J. Bloemer, "Bright and dark gap solitons in a negative index Fabry-Perot etalon," Phys. Rev. Lett. 93, 213902-1-4 (2004). [CrossRef] [PubMed]
  7. G. D'Aguanno, N. Mattiucci, M. Scalora, and M. J. Bloemer, "TE and TM guided modes in an air waveguide with a negative-index-material cladding," Phys. Rev. E 71, 046603-1-7 (2005). [CrossRef]
  8. G. D'Aguanno, N. Akozbek, N. Mattiucci, M. Scalora, M. J. Bloemer, and A. M. Zheltikov, "Dispersion-free pulse propagation in a negative-index material," Opt. Lett. 30, 1998-2000 (2005). [CrossRef] [PubMed]
  9. M. Bloemer, G. D'Aguanno, M. Scalora, and N. Mattiucci, "Broadband omnidirectional reflection from negative index materials," Appl. Phys. Lett. 87, 261921-1-3 (2005). [CrossRef]
  10. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett. 95, 137404-1-4 (2005). [CrossRef] [PubMed]
  11. V. M. Shalaev, W. Cai, U. K. Chettiar, H. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett. 30, 3356-3358 (2005). [CrossRef]
  12. S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, "Near-infrared double negative metamaterials," Opt. Express 13, 4922-4930 (2005). [CrossRef] [PubMed]
  13. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Low-loss negative-index metamaterial at telecommunication wavelengths," Opt. Lett. 31, 1800-1802 (2006). [CrossRef] [PubMed]
  14. G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, "Negative-index metamaterial at 780 nm wavelength," Opt. Lett. 32, 53-55 (2007). [CrossRef]
  15. U. K. Chettiar, A. V. Kildishev, H.-K. Yuan, W. Cai, S. Xiao, V. P. Drachev, and V. M. Shalaev, "Dual-band negative index metamaterial: double negative at 813 nm and single negative at 772 nm," Opt. Lett. 32, 1671-1673 (2007). [CrossRef] [PubMed]
  16. M. J. Bloemer, G. D'Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, "Broadband super-resolving lens with high transparency for propagating and evanescent waves in the visible range," Appl. Phys. Lett. 90, 174113-1-3 (2007). [CrossRef]
  17. K. Aydin, I. Bulu, and E. Ozbay, "Subwavelength resolution with a negative index metamaterial superlens," Appl. Phys. Lett. 90, 254102-1-3 (2007). [CrossRef]
  18. M. Born and E. Wolf, Principles of Optics, 7th (expanded) edition (Cambridge U. Press, 1999).
  19. X. Wang, Z. F. Ren, and K. Kempa, "Unrestricted superlensing in a triangular two-dimensional photonic crystal," Opt. Express 12, 2919-2924 (2004). [CrossRef] [PubMed]
  20. R. Merlin, "Analytical solution of the almost-perfect-lens problem," Appl. Phys. Lett. 84, 1290-1293 (2004) and references therein. [CrossRef]
  21. M. Born and E. Wolf, Principles of Optics, 7th (expanded) edition (Cambridge U. Press, 1999), page 10.
  22. M.-C. Yang and K. J. Webb, "Poynting vector analysis of a superlens," Opt. Lett. 30, 2382-2384 (2005). [CrossRef] [PubMed]
  23. R. W. Ziolkowski, "Propagation in and scattering from a matched metamaterial having a zero index of refraction," Phys. Rev. E 70, 046608-1-12 (2004). [CrossRef]
  24. Handbook of Optical Constants of Solids, E.D.Palik, ed. (Academic, 1985).
  25. The term "canalization" has been first used in P. A. Belov, C. R. Simovski, and P. Ikonen, "Canalization of subwavelength images by electromagnetic crystals," Phys. Rev. B 71, 193105-1-4 (2005). [CrossRef]
  26. H. Raether, Surface Plasmons (Springer-Verlag, 1988).
  27. M. Tsang and D. Psaltis, "Reflectionless evanescent-wave amplification by two dielectric planar waveguides," Opt. Lett. 31, 2741-2743 (2006). [CrossRef] [PubMed]
  28. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995).
  29. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).
  30. Y. Zhao, P. Belov, and Y. Hao, "Accurate modeling of the optical properties of left-handed media using a finite-difference time-domain method," Phys. Rev. E 75, 037602 (2007). [CrossRef]
  31. A. A. Sukhorukov, I. V. Shadrivov, and Yu. S. Kivshar, "Wave scattering by metamaterial wedges and interfaces," Int. J. Numer. Model. 19, 105 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited