OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 3 — Mar. 1, 2008
  • pp: 286–296

Transmission through photonic crystals with multiple line defects at oblique incidence

A. E. Serebryannikov and T. Magath  »View Author Affiliations


JOSA B, Vol. 25, Issue 3, pp. 286-296 (2008)
http://dx.doi.org/10.1364/JOSAB.25.000286


View Full Text Article

Enhanced HTML    Acrobat PDF (942 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Transmission through two-dimensional photonic crystals (PhCs) with several (non)periodic line defects, each being created by removing a single row of rods, are studied with the emphasis put on angular selectivity. Most of the observed features appear due to a hybrid mechanism, which is realized as a common effect of the splitting of a transmission peak being the result of peculiar coupling of individual defect-mode resonators, and the angle-dependent guided-wave cavity effect, which depends on the chosen dispersion. In the case of zero-order propagation, the role of periodic location of line defects is demonstrated. A rich variety of effects can be obtained in the angle domain within a rather narrow frequency range, which contains eigenfrequencies of defect modes. Peculiarities of the transmission peaks arising in the case of first-order propagation are considered in both angle and frequency domains. It is shown that the defect-mode related peaks can be close by to the peaks, which appear due to resonances within the pieces of PhC separated by line defects and their coupling. For the effects observed while two beams are propagating, the presence of multiple defects is rather critical than the periodicity of their location.

© 2008 Optical Society of America

OCIS Codes
(070.6110) Fourier optics and signal processing : Spatial filtering
(120.7000) Instrumentation, measurement, and metrology : Transmission
(230.5750) Optical devices : Resonators
(260.1960) Physical optics : Diffraction theory
(050.5298) Diffraction and gratings : Photonic crystals
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: May 14, 2007
Revised Manuscript: September 24, 2007
Manuscript Accepted: November 15, 2007
Published: February 8, 2008

Citation
A. E. Serebryannikov and T. Magath, "Transmission through photonic crystals with multiple line defects at oblique incidence," J. Opt. Soc. Am. B 25, 286-296 (2008)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-25-3-286


Sort:  Year  |  Journal  |  Reset  

References

  1. K. Sakoda, Optical Properties of Photonic Crystals (Springer, 2005).
  2. K. Inoue and K. Othaka, eds., Photonic Crystals: Physics, Fabrication and Applications (Springer, 2004).
  3. S. L. McCall, P. M. Platzman, R. Dalichaouch, D. Smith, and S. Schultz, "Microwave propagation in two-dimensional dielectric lattices," Phys. Rev. Lett. 67, 2017-2020 (1991). [CrossRef] [PubMed]
  4. E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, "Donor and acceptor modes in photonic band structure," Phys. Rev. Lett. 67, 3380-3383 (1991). [CrossRef] [PubMed]
  5. D. R. Smith, R. Dalichaouch, N. Kroll, S. Schultz, S. L. McCall, and P. M. Platzman, "Photonic band structure and defects in one and two dimensions," J. Opt. Soc. Am. B 10, 314-321 (1993). [CrossRef]
  6. K. Sakoda, T. Ueta, and K. Othaka, "Numerical analysis of eigenmodes localized at line defects in photonic lattices," Phys. Rev. B 56, 14905-14908 (1997). [CrossRef]
  7. K. Othaka, T. Ueta, and K. Amemiya, "Calculation of photonic bands using vector cylindrical waves and reflectivity of light for an array of dielectric rods," Phys. Rev. B 57, 2550-2568 (1998). [CrossRef]
  8. T. Ueda, K. Othaka, N. Kawai, and K. Sakoda, "Limits on quality factors of localized defect modes in photonic crystals due to dielectric loss," J. Appl. Phys. 84, 6299-6304 (1998). [CrossRef]
  9. G. Tayeb and D. Maystre, "Rigorous theoretical study of finite-size two-dimensional photonic crystals doped with microcavities," J. Opt. Soc. Am. A 14, 3323-3332 (1997). [CrossRef]
  10. F. Gadot, A. de Lustrac, J.-M. Lourtioz, T. Brillat, A. Ammouche, and E. Akmansoy, "High-transmission defect modes in two-dimensional metallic photonic crystals," J. Appl. Phys. 85, 8499-8501 (1999). [CrossRef]
  11. H. Benisty, "Modal analysis of optical guides with two-dimensional photonic band-gap boundaries," J. Appl. Phys. 79, 7483-7492 (1996). [CrossRef]
  12. S. Kim, I. Park, and H. Lim, "Proposal for ideal 3-dB splitters-combiners in photonic crystals," Opt. Lett. 30, 257-259 (2005). [CrossRef] [PubMed]
  13. S. Boscolo, M. Midrio, and T. F. Krauss, "Y-junction in photonic crystal channel waveguides: high transmission and impedance matching," Opt. Lett. 27, 1001-1003 (2002). [CrossRef]
  14. M. Yan, P. Shum, and J. Hu, "Design of air-guiding honeycomb photonic bandgap fiber," Opt. Lett. 30, 465-467 (2005). [CrossRef] [PubMed]
  15. H. Benisty, C. Weisbuch, D. Labilloy, M. Rattier, C. J. M. Smith, T. F. Krauss, R. M. De La Rue, R. Houdre, U. Oesterle, C. Jouanin, and D. Cassagne, "Optical and confinement properties of two-dimensional photonic crystals," J. Lightwave Technol. 17, 2063-2077 (1999). [CrossRef]
  16. A. Martinez, F. Cuesta, A. Griol, D. Mira, J. Garcia, P. Sanchis, R. Llorente, and J. Marti, "Photonic-crystal 180° power splitter based on coupled-cavity waveguides," Appl. Phys. Lett. 83, 3033-3035 (2003). [CrossRef]
  17. S. Olivier, C. Weisbuch, and H. Benisty, "Compact and fault-tolerant photonic crystal add-drop filter," Opt. Lett. 28, 2246-2248 (2003). [CrossRef] [PubMed]
  18. Y. J. Lee, J. Yeo, R. Mittra, and W. S. Park, "Applications of electromagnetic bandgap (EBG) superstrates with controllable defects for a class of patch antennas as spatial angular filters," IEEE Trans. Antennas Propag. 53, 224-235 (2005). [CrossRef]
  19. C. Ciminelli, F. Peluso, M. N. Armenise, and R. De La Rue, "Variable oblique incidence for tunability in a two-dimensional photonic-crystal guided-wave filter," J. Lightwave Technol. 24, 470-476 (2006). [CrossRef]
  20. J. H. Wu, L. K. Ang, A. Q. Liu, H. G. Teo, and C. Lu, "Tunable high-Q photonic-bandgap Fabry-Perot resonator," J. Opt. Soc. Am. B 22, 1770-1777 (2005). [CrossRef]
  21. A. Talneau, Ph. Lalanne, M. Agio, and C. M. Soukoulis, "Low-reflection photonic-crystal taper for efficient coupling between guide sections of arbitrary widths," Opt. Lett. 27, 1522-1524 (2002). [CrossRef]
  22. A. Sugitatsu, T. Asano, and S. Noda, "Characterization of line-defect-waveguide lasers in two-dimensional photonic-crystal slabs," Appl. Phys. Lett. 84, 5395-5397 (2004). [CrossRef]
  23. D. Schurig and D. R. Smith, "Spatial filtering using media with indefinite permittivity and permeability tensors," Appl. Phys. Lett. 82, 2215-2217 (2003). [CrossRef]
  24. I. Moreno, J. J. Araiza, and M. Avedano-Alejo, "Thin-film spatial splitters," Opt. Lett. 30, 914-917 (2005). [CrossRef] [PubMed]
  25. A. Sentenac and A.-L. Fehrembach, "Angular tolerant resonant grating filters under oblique incidence," J. Opt. Soc. Am. A 22, 475-480 (2005). [CrossRef]
  26. M. Bayindir, B. Temelkuran, and E. Ozbay, "Tight-binding description of the coupled defect modes in three-dimensional photonic crystals," Phys. Rev. Lett. 84, 2140-2143 (2000). [CrossRef] [PubMed]
  27. X. Hu, Q. Gong, Y. Li, B. Cheng, and D. Zhang, "Ultrafast tunable filter in two-dimensional organic photonic crystal," Opt. Lett. 31, 371-373 (2006). [CrossRef] [PubMed]
  28. T. Magath and A. E. Serebryannikov, "Fast iterative, coupled-integral-equation technique for inhomogeneous profiled and periodic slabs," J. Opt. Soc. Am. A 22, 2405-2418 (2005). [CrossRef]
  29. See www.cst.com.
  30. T. Magath, "Coupled integral equations for diffraction by profiled, anisotropic, periodic structures," IEEE Trans. Antennas Propag. 54, 681-686 (2006). [CrossRef]
  31. K. Sakoda, M. Sasada, T. Fukushima, A. Yamanaka, N. Kawai, and K. Inoue, "Detailed analysis of transmission spectra and Bragg-reflection spectra of a two-dimensional photonic crystal with a lattice constant of 1.15μm," J. Opt. Soc. Am. B 16, 361-365 (1999). [CrossRef]
  32. J. Zimmermann, M. Kamp, A. Forschel, and R. Maerz, "Photonic crystal waveguide directional couplers as wavelength selective optical filters," Opt. Commun. 230, 387-392 (2004). [CrossRef]
  33. H. Altug and J. Vuckovic, "Two-dimensional coupled photonic crystal resonator arrays," Appl. Phys. Lett. 84, 161-163 (2004). [CrossRef]
  34. S. Foteinopoulou and C. M. Soukoulis, "Electromagnetic wave propagation in two-dimensional photonic crystals: a study of anomalous refractive effects," Phys. Rev. B 72, 165112 (2005). [CrossRef]
  35. B. Gralak, S. Enoch, and G. Tayeb, "Anomalous refractive properties of photonic crystals," J. Opt. Soc. Am. A 17, 1012-1020 (2000). [CrossRef]
  36. B. T. Schwartz and R. Piestun, "Total external reflection from metamaterials with ultralow refractive index," J. Opt. Soc. Am. B 20, 2448-2453 (2003). [CrossRef]
  37. M. Born and E. Wolf, Principles of Optics (Pergamon, 1975), Chap. 7.6.
  38. L. C. Botten, A. A. Asatryan, T. N. Langtry, T. P. White, C. M. de Sterke, and R. C. McPhedran, "Semianalytic treatment for propagation in finite photonic crystal waveguides," Opt. Lett. 28, 854-856 (2003). [CrossRef] [PubMed]
  39. N. Burani and J. Laegsgaard, "Perturbative modeling of Bragg-grating-based biosensors in photonic-crystal fibers," J. Opt. Soc. Am. B 22, 2487-2492 (2005). [CrossRef]
  40. A. E. Serebryannikov, T. Magath, and K. Schuenemann, "Bragg transmittance of s-waves through finite-thickness photonic crystals with periodically corrugated interface," Phys. Rev. E 74, 066607 (2006). [CrossRef]
  41. P. V. Parimi, W. T. Lu, P. Vodo, J. B. Sokoloff, and S. Sridhar, "Negative refraction and left-handed electromagnetism in microwave photonic crystals," Phys. Rev. Lett. 92, 127401 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited