OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 3 — Mar. 1, 2008
  • pp: 383–390

Classical optics analogy of quantum teleportation

Diego Francisco and Silvia Ledesma  »View Author Affiliations


JOSA B, Vol. 25, Issue 3, pp. 383-390 (2008)
http://dx.doi.org/10.1364/JOSAB.25.000383


View Full Text Article

Enhanced HTML    Acrobat PDF (649 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A classical optics setup to simulate the quantum teleportation process is presented. The analogy is based on the possibility of encoding a quantum state of a system with a 2 N -dimensional Hilbert space as an image in the input of an optical system. The probability amplitude of each state of a basis is associated with the complex amplitude of the electromagnetic field in a given region of the laser wavefront. Temporal evolutions are represented as changes of the complex amplitude of the field when the wavefront is modified by different optical elements. The classical optics representation of quantum state as images and of universal quantum gates as optical processors is shown. The design and operation of an optical module that is used to simulate the quantum teleportation process are discussed. Experimental results where the teleportation of a one qbit state is simulated are shown.

© 2008 Optical Society of America

OCIS Codes
(000.1600) General : Classical and quantum physics
(200.3050) Optics in computing : Information processing
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: August 22, 2007
Revised Manuscript: November 22, 2007
Manuscript Accepted: December 8, 2007
Published: February 28, 2008

Citation
Diego Francisco and Silvia Ledesma, "Classical optics analogy of quantum teleportation," J. Opt. Soc. Am. B 25, 383-390 (2008)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-25-3-383


Sort:  Year  |  Journal  |  Reset  

References

  1. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?,” Phys. Rev. 47, 777-780 (1935). [CrossRef]
  2. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895-1899 (1993). [CrossRef] [PubMed]
  3. D. Bouwmeester, J. M. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575-579 (1997). [CrossRef]
  4. D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 80, 1121-1125 (1998). [CrossRef]
  5. A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706-709 (1998). [CrossRef] [PubMed]
  6. M. A. Nielsen, E. Knill, and R. Laflamme, “Complete quantum teleportation using nuclear magnetic resonance,” Nature 396, 52-55 (1998). [CrossRef]
  7. R. J. C. Spreeuw, “Classical analogy of entanglement,” Found. Phys. 28, 361-374 (1998). [CrossRef]
  8. R. J. C. Spreeuw, “Classical wave-optics analogy of quantum information processing,” Phys. Rev. A 63, 062302 (2001). [CrossRef]
  9. N. Bhattacharya, H. B. van Linden van den Heuvell, and R. J. C. Spreeuw, “Implementation of quantum search algorithm using classical Fourier optics,” Phys. Rev. Lett. 88, 137901 (2002). [CrossRef] [PubMed]
  10. G. Puentes, C. La Mela, S. Ledesma, C. Iemmi, J. P. Paz, and M. Saraceno, “Optical simulation of quantum algorithms using programmable liquid crystal displays,” Phys. Rev. A 69, 042319 (2004). [CrossRef]
  11. D. Francisco, C. Iemmi, J. P. Paz, and S. Ledesma, “Optical simulation of the quantum Hadamard operator,” Opt. Commun. 268, 340-345 (2006). [CrossRef]
  12. N. J. Cerf, C. Adami, and P. G. Kwiat, “Optical simulation of quantum logic,” Phys. Rev. A 57, R1477-R1480 (1998). [CrossRef]
  13. D. Francisco, C. Iemmi, J. P. Paz, and S. Ledesma, “Simulating a quantum walk with classical optics,” Phys. Rev. A 74, 052327 (2006). [CrossRef]
  14. J. S. Bell, Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy (Cambridge U. Press, 1987).
  15. R. Blume-Kohout, C. M. Caves, and I. H. Deutsch, “Physical-resource requirements and the power of quantum computation,” Found. Phys. 32, 1641-1670 (2002). [CrossRef]
  16. M. Nielsen and I. Chuang, Quantum Information and Computation (Cambridge U. Press, 2000).
  17. A. Marquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, and M. J. Yzuel, “Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays based on a simple physical model,” Opt. Eng. (Bellingham) 40, 2558-2564 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited