OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 3 — Mar. 1, 2008
  • pp: 396–406

Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length

Michael R. Gleeson, Dusan Sabol, Shui Liu, Ciara E. Close, John V. Kelly, and John T. Sheridan  »View Author Affiliations


JOSA B, Vol. 25, Issue 3, pp. 396-406 (2008)
http://dx.doi.org/10.1364/JOSAB.25.000396


View Full Text Article

Enhanced HTML    Acrobat PDF (175 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

One of the key predictions of the nonlocal photopolymerization driven diffusion (NPDD) model is that a reduction in the extent of the nonlocal effects within a material will improve the high spatial frequency response. The NPDD model is generalized to more accurately model material absorbtivity. By eliminating the necessity for the steady-state approximation to describe the rate of change of monomer radical concentration, a more accurate physical representation of the initial transient behavior, at the start of grating growth, is achieved, which includes the effects of oxygen-based inhibition. The spatial frequency response of an acrylamide/polyvinylalcohol-based photopolymer is then improved through the addition of a chain transfer agent (CTA), sodium formate. Using the NPDD model demonstrates that the CTA has the effect of decreasing the average length of the polyacrylamide (PA) chains formed, thus reducing the nonlocal response parameter, σ. Further independent confirmation of the resulting reduction in the PA average molecular weight is provided using a diffusion-based holographic technique.

© 2008 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(090.2890) Holography : Holographic optical elements
(090.2900) Holography : Optical storage materials
(160.5470) Materials : Polymers

ToC Category:
Holography

History
Original Manuscript: August 27, 2007
Revised Manuscript: December 10, 2007
Manuscript Accepted: January 7, 2008
Published: February 29, 2008

Citation
Michael R. Gleeson, Dusan Sabol, Shui Liu, Ciara E. Close, John V. Kelly, and John T. Sheridan, "Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length," J. Opt. Soc. Am. B 25, 396-406 (2008)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-25-3-396


Sort:  Year  |  Journal  |  Reset  

References

  1. M. R. Gleeson, J. V. Kelly, and J. T. Sheridan, “Modelling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 1-9 (2007). [CrossRef]
  2. J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, “Adjusted intensity non-local diffusion model of photopolymer grating formation,” J. Opt. Soc. Am. B 19, 621-624 (2002). [CrossRef]
  3. J. V. Kelly, F. T. O'Neill, and J. T. Sheridan, “Holographic photopolymer materials: non-local polymerization driven diffusion under non-ideal kinetic conditions,” J. Opt. Soc. Am. B 22, 407-416 (2005). [CrossRef]
  4. M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O'Neill, and J. T. Sheridan, “The effects of absorption and inhibition during grating formation in photopolymer materials,” J. Opt. Soc. Am. B 23, 2079-2088 (2006). [CrossRef]
  5. J. T. Sheridan and J. R. Lawrence, “Non-local response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1108-1114 (2000). [CrossRef]
  6. J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttgart) 112, 449-463 (2001). [CrossRef]
  7. F. T. O'Neill, J. R. Lawrence, and J. T. Sheridan, “Comparison of holographic photopolymer materials by use of analytic non-local diffusion models,” Appl. Opt. 41, 845-852 (2002). [CrossRef] [PubMed]
  8. L. Carretero, S. Blaya, R. Mallavia, R. Madrigal, A. Belendez, and A. Fimia, “Theoretical and experimental study of the bleaching of a dye in a film-polymerization process,” Appl. Opt. 37, 4496-4499 (1998). [CrossRef]
  9. I. Aubrecht, M. Miller, and I. Koudela, “Recording of holographic gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465-1477 (1998). [CrossRef]
  10. J. V. Kelly, M. R. Gleeson, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the non-local polymer driven diffusion model,” Opt. Express 13, 6990-7004 (2005). [CrossRef] [PubMed]
  11. G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929-1939 (1994). [CrossRef]
  12. S. Piazolla and B. K. Jenkins, “First-harmonic diffusion model for holographic grating formation in photopolymers,” J. Opt. Soc. Am. B 17, 1147-1157 (2000). [CrossRef]
  13. M. Pabon, J. Selb, F. Candau, and R. G. Gilbert, “Polymerization of acrlyamide in solution and inverse emulsion: number molecular weight distribution with chain transfer agent,” Polymer 40, 3101-3106 (1999). [CrossRef]
  14. M. Fevola, R. Hester, and C. McCormack, “Molecular weight control of polyacyrlamide with sodium formate as a chain-transfer agent: characterization via size exclusion chromatography/multi-angle laser light scattering and determination of chain-transfer constant,” J. Polym. Sci., Part A: Polym. Chem. 41, 560-568 (2003). [CrossRef]
  15. L. A. Goretta and R. R. Otremba, Formic acid alkali metal formates as chain transfer agents in the preparation of acrylamide polymers, U.S. patent 4,307,215 (December 22, 1981).
  16. H. A. Gartner, Process for the production of high molecular weight copolymers of diallyammonium monomers and acrylamide monomers in an aqueous dispersed phase, U.S. patent 5,171,783 (December 15, 1992).
  17. M. C. Cole, F. R. Askham, and W. L. Wilson, “Holographic recording medium with control of photopolymerization and dark reaction,” U.S. patent 2006/0194120 A1 (August 31, 2006).
  18. F. T. O'Neill, J. R. Lawrence, and J. T. Sheridan, “Improvement of holographic recording material using aerosol sealant,” J. Opt. A, Pure Appl. Opt. 3, 20-25 (2001). [CrossRef]
  19. M. R. Gleeson, J. V. Kelly, F. T. O'Neill, and J. T. Sheridan, “Recording beam modulation during grating formation,” Appl. Opt. 44, 5475-5482 (2005). [CrossRef] [PubMed]
  20. P. W. Atkins, Physical Chemistry, 4th ed. (Oxford U. Press, 1992).
  21. J. Crank, The Mathematics of Diffusion, 2nd ed. (Oxford U. Press, 1975).
  22. H. Kogelnik, “Coupled wave theory for thick holographic gratings,” Bell Syst. Tech. J. 48, 2909-2947 (1969).
  23. J. Crank and G. S. Park, Diffusion in Polymers, 1st ed. (Academic, 1968).
  24. S. Gallego, M. Ortuno, C. Niepp, A. Marquez, A. Belendez, and I. Pascual, “Characterization of polyvinyl alcohol/acrylamide holographic memories with a first-harmonic diffusion model,” Appl. Opt. 44, 6205-6210 (2005). [CrossRef] [PubMed]
  25. D. J. Lougnot and C. Turk, “Photopolymers for holographic recording: II. Self-developing materials for real-time interferometry,” Pure Appl. Opt. 1, 251-268 (1992). [CrossRef]
  26. D. J. Lougnot and C. Turk, “Photopolymers for holographic recording: III. Time modulated illumination and thermal post-effect,” Pure Appl. Opt. 1, 269-279 (1992). [CrossRef]
  27. A. Fimia, N. Lopez, F. Mateos, R. Sastre, J. Pineda, and F. Amat-Guerri, “Elimination of oxygen inhibition in photopolymer systems used as holographic recording materials,” J. Mod. Opt. 40, 699-706 (1993). [CrossRef]
  28. A. K. O'Brien and C. N. Bowman, “Modelling the effect of oxygen on photopolymerization kinetics,” Macromol. Theory Simul. 15, 176-182 (2006). [CrossRef]
  29. G. Odian, Principles of Polymerization (Wiley, 1991).
  30. H. Inaba and H. Naito, “Measurement of the refractive indices of lithium-sodium formate and sodium formate crystals,” Opto-electronics (London) 5, 551-555 (1973). [CrossRef]
  31. S. Wu and E. N. Glytsis, “Holographic grating formation in photopolymers: analysis and experimental results based on a nonlocal diffusion model and rigorous coupled-wave analysis,” J. Opt. Soc. Am. B 20, 1177-1188 (2003). [CrossRef]
  32. C. E. Close, M. R. Gleeson, F. T. O'Neill, J. V. Kelly, and J. T. Sheridan, “Control and measurement of the physical properties in acrylamide based photopolymer materials,” Proc. SPIE 5827, 346-357 (2005). [CrossRef]
  33. S. Gallego, M. Ortuno, C. Niepp, A. Marquez, A. Belendez, J. V. Kelly, and J. T. Sheridan, “3 Dimensional analysis of holographic photopolymers based memories,” Opt. Express 13, 3543-3557 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited