OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 3 — Mar. 1, 2008
  • pp: 448–457

Optimized split-step method for modeling nonlinear pulse propagation in fiber Bragg gratings

Zeev Toroker and Moshe Horowitz  »View Author Affiliations

JOSA B, Vol. 25, Issue 3, pp. 448-457 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (562 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an optimized split-step method for solving nonlinear coupled-mode equations that model wave propagation in nonlinear fiber Bragg gratings. By separately controlling the spatial and the temporal step size of the solution, we could significantly decrease the run time duration without significantly affecting the result accuracy. The accuracy of the method and the dependence of the error on the algorithm parameters are studied in several examples. Physical considerations are given to determine the required resolution.

© 2008 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(050.2770) Diffraction and gratings : Gratings
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: September 26, 2007
Revised Manuscript: December 24, 2007
Manuscript Accepted: January 7, 2008
Published: February 29, 2008

Zeev Toroker and Moshe Horowitz, "Optimized split-step method for modeling nonlinear pulse propagation in fiber Bragg gratings," J. Opt. Soc. Am. B 25, 448-457 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. H. G. Winful, “Pulse compression in optical fiber filters,” Appl. Phys. Lett. 46, 527-529 (1985). [CrossRef]
  2. A. Rosenthal and M. Horowitz, “Bragg-soliton formation and pulse compression in a one-dimensional periodic structure,” Phys. Rev. E 74, 066611 (2006). [CrossRef]
  3. C. M. de Sterke and J. E. Sipe, “Switching dynamics of finite periodic nonlinear media: a numerical study,” Phys. Rev. A 42, 2858-2869 (1990). [CrossRef] [PubMed]
  4. S. Pereira and J. E. Sipe, “Nonlinear pulse propagation in birefringent fiber Bragg gratings,” Opt. Express 3, 418-432 (1998). [CrossRef] [PubMed]
  5. D. Taverner, N. G. R. Broderick, D. J. Richardson, M. Ibsen, and R. I. Laming, “All-optical AND gate based on coupled gap-soliton formation in a fiber Bragg grating,” Opt. Lett. 23, 259-261 (1998). [CrossRef]
  6. Y. P. Shapira and M. Horowitz, “Optical AND gate based on soliton interaction in a fiber Bragg grating,” Opt. Lett. 32, 1211-1213 (2007). [CrossRef] [PubMed]
  7. J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, “Dispersionless slow light using gap solitons,” Nat. Phys. 2, 775-780 (2006). [CrossRef]
  8. J. T. Mok, C. M. de Sterke, and B. J. Eggleton, “Delay-tunable gap soliton-based slow-light system,” Opt. Express 14, 11987-11996 (2006). [CrossRef] [PubMed]
  9. A. B. Aceves and S. Wabnitz, “Self-induced transparency solitons in nonlinear refractive periodic media,” Phys. Lett. A 141, 37-42 (1989). [CrossRef]
  10. D. N. Christodoulides and R. I. Joseph, “Slow Bragg solitons in nonlinear periodic structures,” Phys. Rev. Lett. 62, 1746-1749 (1989). [CrossRef] [PubMed]
  11. C. M. de Sterke and J. E. Sipe, “Gap solitons,” in Progress in Optics XXXIII, E.Wolf, ed. (Elsevier, 1994), pp. 203-260.
  12. W. C. K. Mak, B. A. Malomed, and P. L. Chu, “Formation of a standing light pulse through collision of gap solitons,” Phys. Rev. E 68, 26609 (2003). [CrossRef]
  13. C. M. de Sterke, K. R. Jackson, and B. D. Robert, “Nonlinear coupled-mode equations on a finite interval: a numerical procedure,” J. Opt. Soc. Am. B 8, 403-412 (1991). [CrossRef]
  14. A. Rosenthal and M. Horowitz, “Analysis and design of nonlinear fiber Bragg gratings and their application for optical compression of reflected pulses,” Opt. Lett. 31, 1334-1336 (2006). [CrossRef] [PubMed]
  15. O. V. Sinkin, J. Zweck, and C. R. Menyuk, “Optimization of the split-step Fourier method in modeling optical-fiber communications systems,” J. Lightwave Technol. 21, 61-68 (2003). [CrossRef]
  16. G. P. Agrawal, “Numerical methods,” in Nonlinear Fiber Optics (Academic, 1995), pp. 50-55.
  17. C. E. Shannon, “Communication in the presence of noise,” Proc. IRE 37, 10-21 (1949). [CrossRef]
  18. J. Saijonmaa and D. Yevick, “Beam-propagation analysis of loss in bent optical waveguides and fibers,” J. Opt. Soc. Am. 73, 1785-1791 (1983). [CrossRef]
  19. M. D. Feit and J. A. Fleck, Jr., “Light propagation in graded-index optical fibers,” Appl. Opt. 17, 3990-3998 (1978). [CrossRef] [PubMed]
  20. C. Vassallo and F. Collino, “Highly efficient absorbing boundary conditions for the beam propagation method,” J. Lightwave Technol. 14, 1570-1577 (1996). [CrossRef]
  21. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185-200 (1994). [CrossRef]
  22. T. Dohnal and T. Hagstrom, “Perfectly matched layers in photonics computations: 1D and 2D nonlinear coupled mode equations,” J. Comput. Phys. 223, 690-710 (2007). [CrossRef]
  23. R. L. Burden and J. D. Faires, “Richardson's extrapolation,” in Numerical Analysis (ITP, 1997), pp. 180-183.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited