OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 4 — Apr. 1, 2008
  • pp: 518–544

Mathematical modeling of crossed nanophotonic structures with generalized scattering-matrix method and local Fourier modal analysis

Hwi Kim and Byoungho Lee  »View Author Affiliations


JOSA B, Vol. 25, Issue 4, pp. 518-544 (2008)
http://dx.doi.org/10.1364/JOSAB.25.000518


View Full Text Article

Enhanced HTML    Acrobat PDF (2759 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a novel electromagnetic analysis scheme for crossed nanophotonic structures. The developed scheme is based on the mathematical modeling with the local Fourier modal analysis and the generalized scattering-matrix method. The mathematical Bloch eigenmodes of two-port block and four-port intersection block structures are analyzed by the local Fourier modal analysis. The interconnections of two-port blocks and four-port intersection block are described by the generalized scattering-matrix method. This scheme provides the linear system theory of general crossed nanophotonic structures.

© 2008 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(000.6800) General : Theoretical physics
(050.0050) Diffraction and gratings : Diffraction and gratings
(050.1940) Diffraction and gratings : Diffraction
(050.1950) Diffraction and gratings : Diffraction gratings
(050.1960) Diffraction and gratings : Diffraction theory

ToC Category:
Fourier Optics and Signal Processing

History
Original Manuscript: November 7, 2007
Manuscript Accepted: January 7, 2008
Published: March 20, 2008

Citation
Hwi Kim and Byoungho Lee, "Mathematical modeling of crossed nanophotonic structures with generalized scattering-matrix method and local Fourier modal analysis," J. Opt. Soc. Am. B 25, 518-544 (2008)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-25-4-518


Sort:  Year  |  Journal  |  Reset  

References

  1. N. Moll, R. Harbers, R. F. Mahrt, and G.-L. Bona, “Integrated all-optical switch in a cross-waveguide geometry,” Appl. Phys. Lett. 88, 171104 (2006). [CrossRef]
  2. M. F. Yanik, S. Fan, M. Soliacic, and D. Joannopoulos, “All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry,” Opt. Lett. 28, 2506-2508 (2003). [CrossRef] [PubMed]
  3. M. F. Yanik and S. Fan, “Stopping light all-optically,” Phys. Rev. Lett. 92, 083901 (2004). [CrossRef] [PubMed]
  4. M. F. Yanik, H. A. Altug, J. Vuckovic, and S. Fan, “Sub-micron all optical digital memory and integration of nano-scale photonic devices without isolators,” J. Lightwave Technol. 22, 2316-2322 (2004). [CrossRef]
  5. S. Fan, S. G. Johnson, and J. D. Joannopoulos, “Waveguide branches in photonic crystals,” J. Opt. Soc. Am. B 18, 162-165 (2001). [CrossRef]
  6. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787-3790 (1996). [CrossRef] [PubMed]
  7. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. A 71, 811-818 (1981). [CrossRef]
  8. P. Lalanne, “Improved formulation of the coupled-wave method for two-dimensional gratings,” J. Opt. Soc. Am. A 14, 1592-1598 (1997). [CrossRef]
  9. H. Kim, S. Kim, I.-M. Lee, and B. Lee, “Pseudo-Fourier modal analysis on dielectric slabs with arbitrary longitudinal permittivity and permeability profiles,” J. Opt. Soc. Am. A 23, 2177-2191 (2006). [CrossRef]
  10. W. Jian and R. T. Chen, “Rigorous analysis of diffraction gratings of arbitrary profiles using virtual photonic crystals,” J. Opt. Soc. Am. A 23, 2192-2197 (2006). [CrossRef]
  11. H. Kim and B. Lee, “Pseudo-Fourier modal analysis of two-dimensional arbitrarily shaped grating structures,” J. Opt. Soc. Am. A 25, 40-54 (2008). [CrossRef]
  12. M. G. Moharam, E. B. Grann, and D. A. Pommet, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068-1076 (1995). [CrossRef]
  13. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870-1876 (1996). [CrossRef]
  14. L. Li, “Fourier modal method for crossed anisotropic gratings with arbitrary permittivity and permeability tensors,” J. Opt. A, Pure Appl. Opt. 5, 345-355 (2003). [CrossRef]
  15. L. Li, “Mathematical reflections on the Fourier modal method in grating theory,” in Mathematical Modeling in Optical Science, G.Bao, ed. (SIAM, Philadelphia, 2001), Chap. 4. [CrossRef]
  16. E. Popov and M. Neviére, “Differential theory for diffraction gratings: a new formulation for TM polarization with rapid convergence,” Opt. Lett. 25, 598-600 (2000). [CrossRef]
  17. E. Popov and M. Neviére, “Grating theory: new equations in Fourier space leading to fast converging results for TM polarization,” J. Opt. Soc. Am. A 17, 1773-1784 (2000). [CrossRef]
  18. J. P. Hugonin and P. Lalanne, “Perfectly matched layers as nonlinear coordinate transforms: a generalized formalization,” J. Opt. Soc. Am. A 22, 1844-1849 (2005). [CrossRef]
  19. E. Popov, M. Neviére, B. Gralak, and G. Tayeb, “Staircase approximation validity for arbitrary-shaped gratings,” J. Opt. Soc. Am. A 19, 33-42 (2002). [CrossRef]
  20. H. Kim, I.-M. Lee, and B. Lee, “Extended scattering-matrix method for efficient full parallel implementation of rigorous coupled-wave analysis,” J. Opt. Soc. Am. A 24, 2313-2327 (2007). [CrossRef]
  21. L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13, 1024-1035 (1996). [CrossRef]
  22. E. L. Tan, “Note on formulation of the enhanced scattering-(transmittance-) matrix approach,” J. Opt. Soc. Am. A 19, 1157-1161 (2002). [CrossRef]
  23. L. Li, “Note on the S-matrix propagation algorithm,” J. Opt. Soc. Am. A 20, 655-660 (2003). [CrossRef]
  24. M. G. Moharam and A. B. Greenwell, “Efficient rigorous calculations of power flow in grating coupled surface-emitting devices,” Proc. SPIE 5456, 57-67 (2004). [CrossRef]
  25. Q. Cao, P. Lalanne, and J. P. Hugonin, “Stable and efficient Bloch-mode computational method for one-dimensional grating waveguides,” J. Opt. Soc. Am. A 19, 335-338 (2002). [CrossRef]
  26. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press, 1995).
  27. J.-M. Lourtioz, H. Benisty, V. Berger, J.-M. Gerard, A. Tchelnokov, and P. Fornel, Photonic Crystals: Towards Nanoscale Photonic Devices (Springer, 1999).
  28. S. G. Johnson and J. D. Joannopoulos, Photonic Crystals: The Road from Theory to Practice (Springer, 2002).
  29. K. Sakoda, Optical Properties of Photonic Crystals (Springer, 2004).
  30. S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90, 051113 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited