OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 4 — Apr. 1, 2008
  • pp: 555–563

Dependence of nonlinearity enhancement on power density in photonic crystals characterized by numerical Z-scan experiments based on the finite-difference time-domain technique

Zi-Ming Meng, Hai-Ying Liu, Qiao-Feng Dai, Li-Jun Wu, Qi Guo, Wei Hu, Song-Hao Liu, Sheng Lan, and V. A. Trofimov  »View Author Affiliations


JOSA B, Vol. 25, Issue 4, pp. 555-563 (2008)
http://dx.doi.org/10.1364/JOSAB.25.000555


View Full Text Article

Enhanced HTML    Acrobat PDF (500 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the enhancement of nonlinearity in one-dimensional (1D) photonic crystals (PCs) with Kerr nonlinearity by numerical Z-scan experiments based on the finite-difference time-domain technique. Focused Gaussian beams with well-defined waists and Rayleigh lengths necessary for Z-scan experiments are generated through a conjugated manipulation of the Gaussian beams propagating in free space. The Z-scan measurements used for bulk materials are naturally extended to 1D PCs after incorporating the frequency- and power-density-dependent reflections into their linear and nonlinear absorptions. The closed- and open-aperture Z-scan traces for the 1D PCs are obtained and a symmetric method is employed to modify the asymmetric closed-aperture traces. The nonlinearity enhancement factors at different frequencies in the first and second bands are derived numerically and analytically. A good agreement is found between the numerical and analytical results in the case of weak nonlinearity. Moreover, the dependences of the enhancement factor on the incident power density for different frequencies in the 1D PCs are extracted and they are found to be much different from those in bulk materials. It is revealed that the variation of the group velocity with increasing power density is responsible for the power-density dependence of the enhancement factor. It indicates that in practice one must deliberately choose the working frequency and power density of PC-based devices in order to achieve a maximum enhancement of nonlinearity.

© 2008 Optical Society of America

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics

ToC Category:
Photonic Crystals

History
Original Manuscript: December 7, 2007
Manuscript Accepted: January 14, 2008
Published: March 21, 2008

Citation
Zi-Ming Meng, Hai-Ying Liu, Qiao-Feng Dai, Li-Jun Wu, Qi Guo, Wei Hu, Song-Hao Liu, Sheng Lan, and V. A. Trofimov, "Dependence of nonlinearity enhancement on power density in photonic crystals characterized by numerical Z-scan experiments based on the finite-difference time-domain technique," J. Opt. Soc. Am. B 25, 555-563 (2008)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-25-4-555

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited