OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 4 — Apr. 1, 2008
  • pp: 599–608

Slow-light effect in dual-periodic photonic lattice

Alexey G. Yamilov, Mark R. Herrera, and Massimo F. Bertino  »View Author Affiliations

JOSA B, Vol. 25, Issue 4, pp. 599-608 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (742 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present analytical and numerical studies of a photonic lattice with short- and long-range harmonic modulations of the refractive index. Such structures can be prepared experimentally with holographic photolithography. In the spectral region of the photonic bandgap of the underlying single-periodic crystal, we observe a series of bands with anomalously small dispersion. The related slow-light effect is attributed to the long-range modulation of the photonic lattice that leads to formation of an array of evanescently coupled high-Q cavities. The band structure of the lattice is studied with several techniques: (i) transfer matrix approach; (ii) an analysis of resonant coupling in the process of band folding; (iii) effective-medium approach based on coupled-mode theory; and (iv) the Bogolyubov–Mitropolsky approach. The latter method, commonly used in the studies of nonlinear oscillators, was employed to investigate the behavior of eigenfunction envelopes and the band structure of the dual-periodic photonic lattice. We show that reliable results can be obtained even in the case of large refractive index modulation.

© 2008 Optical Society of America

OCIS Codes
(350.5500) Other areas of optics : Propagation
(230.4555) Optical devices : Coupled resonators
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: November 20, 2007
Revised Manuscript: February 13, 2008
Manuscript Accepted: February 15, 2008
Published: March 27, 2008

Alexey G. Yamilov, Mark R. Herrera, and Massimo F. Bertino, "Slow-light effect in dual-periodic photonic lattice," J. Opt. Soc. Am. B 25, 599-608 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. C.M.Soukoulis, ed., Photonic Band Gap Materials (Kluwer, Dordrecht, 1996).
  2. P. W. Milonni, Fast Light, Slow Light and Left-Handed Light (Institute of Physics, 2005).
  3. S. Nojima, “Enhancement of optical gain in two-dimensional photonic crystals with active lattice points,” Jpn. J. Appl. Phys., Part 2 37, L565-L567 (1998). [CrossRef]
  4. K. Sakoda, “Enhanced light amplification due to group-velocity anomaly peculiar to two- and three-dimensional photonic crystals,” Opt. Express 4, 167-176 (1999). [CrossRef] [PubMed]
  5. N. Susa, “Threshold gain and gain-enhancement due to distributed-feedback in two-dimensional photonic-crystal lasers,” J. Appl. Phys. 89, 815-823 (2001). [CrossRef]
  6. Yu. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65-69 (2005). [CrossRef] [PubMed]
  7. J. K. S. Poon, J. Scheuer, Y. Xu, and A. Yariv, “Designing coupled-resonator optical waveguide delay lines,” J. Opt. Soc. Am. B 21, 1665-1673 (2004). [CrossRef]
  8. J. Scheuer, G. Paloczi, J. Poon, and A. Yariv, “Toward the slowing and storage of light,” Opt. Photonics News 16, 36-40 (2005). [CrossRef]
  9. Y. Xu, R. K. Lee, and A. Yariv, “Propagation and second-harmonic generation of electromagnetic waves in a coupled-resonator optical waveguide,” J. Opt. Soc. Am. B 17, 387-400 (2000). [CrossRef]
  10. M. Soljacic, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19, 2052-2059 (2002). [CrossRef]
  11. R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199-202 (2006). [CrossRef] [PubMed]
  12. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  13. J. F. Galisteo-López and C. López, “High-energy optical response of artificial opals,” Phys. Rev. B 70, 035108 (2004). [CrossRef]
  14. M. Scharrer, A. Yamilov, X. Wu, H. Cao, and R. P. H. Chang, “Ultraviolet lasing in high-order bands of three-dimensional ZnO photonic crystals,” Appl. Phys. Lett. 88, 201103 (2006). [CrossRef]
  15. L. A. Dorado, R. A. Depine, and H. Miguez, “Effect of extinction on the high-energy optical response of photonic crystals,” Phys. Rev. B 75, 241101 (2007). [CrossRef]
  16. N. Stefanou and A. Modinos, “Impurity bands in photonic insulators,” Phys. Rev. B 57, 12127-12133 (1998). [CrossRef]
  17. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711-713 (1999). [CrossRef]
  18. J. K. S. Poon, L. Zhu, G. A. DeRose, and A. Yariv, “Polymer microring coupled-resonator optical waveguides,” J. Lightwave Technol. 24, 1843-1849 (2006). [CrossRef]
  19. H. Altug and J. Vuckovic, “Experimental demonstration of the slow group velocity of light in two-dimensional coupled photonic crystal microcavity arrays,” Appl. Phys. Lett. 86, 111102 (2005). [CrossRef]
  20. M. Bayindir, S. Tanriseven, and E. Ozbay, “Propagation of light through localized coupled-cavity modes in one-dimensional photonic band-gap structures,” Appl. Phys. A 72, 117-119 (2001). [CrossRef]
  21. M. Bayindir, C. Kural, and E. Ozbay, “Coupled optical microcavities in one-dimensional photonic bandgap structures,” J. Opt. A, Pure Appl. Opt. 3, S184-S189 (2001). [CrossRef]
  22. R. Shimada, T. Koda, T. Ueta, and K. Ohtaka, “Strong localization of Bloch photons in dual-periodic dielectric multilayer structures,” J. Appl. Phys. 90, 3905-3909 (2001). [CrossRef]
  23. H. Kitahara, T. Kawaguchi, J. Miyashita, R. Shimada, and M. W. Takeda, “Strongly localized singular bloch modes created in dual-periodic microstrip lines,” J. Phys. Soc. Jpn. 73, 296-299 (2004). [CrossRef]
  24. R. Shimada, T. Koda, T. Ueta, and K. Ohtaka, “Energy spectra in dual-periodic multilayer structures,” J. Phys. Soc. Jpn. 67, 3414-3419 (1998). [CrossRef]
  25. Z.-W. Liu, Y. Du, J. Liao, S.-N. Zhu, Y.-Y. Zhu, Y.-Q. Qin, H.-T. Wang, J.-L. He, C. Zhang, and N.-B. Ming, “Engineering of a dual-periodic optical superlattice used in a coupled optical parametric interaction,” J. Opt. Soc. Am. B 19, 1676-1684 (2002) [CrossRef]
  26. J. E. Sipe, L. Poladian, and C. Martin de Sterke, “Propagation through noniniform grating structures,” J. Opt. Soc. Am. A 11, 1307-1320 (1994). [CrossRef]
  27. J. M. Benedickson, J. P. Dowling, and M. Scalora, “Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures,” Phys. Rev. E 53, 4107-4121 (1996). [CrossRef]
  28. D. Janner, G. Galzerano, G. Della Valle, P. Laporta, S. Longhi, and M. Belmonte, “Slow light in periodic superstructure Bragg grating,” Phys. Rev. E 72, 056605 (2005). [CrossRef]
  29. K. Yagasaki, I. M. Merhasin, B. A. Malomed, T. Wagenknecht, and A. R. Champneys, “Gap solitons in Bragg gratings with a harmonic superlattice,” Europhys. Lett. 74, 1006-1012 (2006). [CrossRef]
  30. A. Yamilov and M. Bertino, “Disorder-immune coupled resonator optical waveguide,” Opt. Lett. 32, 283-285 (2007). [CrossRef] [PubMed]
  31. M. F. Bertino, R. R. Gadipalli, J. G. Story, C. G. Williams, G. Zhang, C. Sotiriou-Leventis, A. T. Tokuhiro, S. Guha, and N. Leventis, “Laser writing of semiconductor nanoparticles and quantum dots,” Appl. Phys. Lett. 85, 6007-6009 (2004). [CrossRef]
  32. M. F. Bertino, R. R. Gadipalli, L. A. Martin, L. E. Rich, A. Yamilov, B. R. Heckman, N. Leventis, S. Guha, J. Katsoudas, R. Divan, and D. C. Mancini, “Quantum dots by ultraviolet and X-ray lithography,” Nanotechnology 18, 315603 (2007). [CrossRef]
  33. D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed. (Academic, 1991).
  34. J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of discrete solitons in optically induced real time waveguide arrays,” Phys. Rev. Lett. 90, 023902 (2003). [CrossRef] [PubMed]
  35. D. Neshev, E. Ostrovskaya, Y. Kivshar, and W. Krolikovwski, “Spatial solitons in optically induced gratings,” Opt. Lett. 28, 710-712 (2003). [CrossRef] [PubMed]
  36. N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E 66, 046602 (2002). [CrossRef]
  37. P. Yeh, Optical Waves in Layered Media (Wiley, 2005).
  38. I. M. Lifshitz, S. A. Gredeskul, and L. A. Pastur, Introduction to the Theory of Disordered Systems (Wiley, 1988).
  39. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Brooks Cole, 1976).
  40. C. M. de Sterke, “Superstructure gratings in the tight-binding approximation,” Phys. Rev. E 57, 3502-3509 (1998). [CrossRef]
  41. P. S. Landa, Regular and Chaotic Oscillations (Springer, 2001).
  42. N. N. Bogolyubov and Yu. A. Mitropolsky, Asymptotic Methods in Theory of Nonlinear Oscillations (Nauka, 1974) (in Russian).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited