OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 4 — Apr. 1, 2008
  • pp: 633–644

Dependence of guided resonances on the structural parameters of terahertz photonic crystal slabs

Tushar Prasad, Vicki L. Colvin, and Daniel M. Mittleman  »View Author Affiliations

JOSA B, Vol. 25, Issue 4, pp. 633-644 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1992 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using terahertz spectroscopy, we measure the normal-incidence transmission coefficient of photonic crystals consisting of a periodic lattice of air holes in a silicon slab. Sharp resonant features are observed in the transmission spectra due to coupling of the leaky photonic crystal modes, called guided resonances, to the continuum of free-space modes. The resonances show considerable sensitivity to the structural parameters of the slab, including the slab thickness. By varying each crystal parameter systematically, we study the dependence of the resonances on the geometry of the photonic crystal slabs. Even small changes in a parameter such as the slab thickness, for example, can lead to dramatic changes in the optical spectrum. We also compare the transmission spectrum of a photonic crystal slab with a hexagonal lattice to that of a slab with a square lattice. In most cases, the experimental results match very well with numerical simulations based on the finite element method.

© 2008 Optical Society of America

OCIS Codes
(160.5298) Materials : Photonic crystals
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Photonic Crystals

Original Manuscript: December 18, 2007
Manuscript Accepted: January 24, 2008
Published: March 31, 2008

Tushar Prasad, Vicki L. Colvin, and Daniel M. Mittleman, "Dependence of guided resonances on the structural parameters of terahertz photonic crystal slabs," J. Opt. Soc. Am. B 25, 633-644 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).
  2. K. Sakoda, Optical Properties of Photonic Crystals (Springer, 2001).
  3. S. G. Johnson and J. D. Joannopoulos, Photonic Crystals: The Road from Theory to Practice (Springer, 2002).
  4. E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, “Three-dimensional control of light in a two-dimensional photonic crystal slab,” Nature 407, 983-986 (2000). [CrossRef] [PubMed]
  5. A. Mekis, J. C. Chen, I. Kurland, S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787-3790 (1996). [CrossRef] [PubMed]
  6. S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751-5758 (1999). [CrossRef]
  7. S. G. Johnson, P. R. Villeneuve, S. H. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212-8222 (2000). [CrossRef]
  8. R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, G. T. K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a two-dimensional photonic crystal,” Phys. Rev. B 71, 085106 (2005). [CrossRef]
  9. S. N. Tandon, M. Soljacic, G. S. Petrich, J. D. Joannopoulos, and L. A. Kolodziejski, “The superprism effect using large area 2D-periodic photonic crystal slabs,” Photon. Nanostruct. Fundam. Appl. 3, 10-18 (2005). [CrossRef]
  10. P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljacic, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5, 93-96 (2006). [CrossRef] [PubMed]
  11. T. Matsumoto, T. Asatsuma, and T. Baba, “Experimental demonstration of a wavelength demultiplexer based on negative-refractive photonic-crystal components,” Appl. Phys. Lett. 91, 091117 (2007). [CrossRef]
  12. M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70, 1438-1440 (1997). [CrossRef]
  13. V. N. Astratov, I. S. Culshaw, R. M. Stevenson, D. M. Whittaker, M. S. Skolnick, T. F. Krauss, and R. M. De la Rue, “Resonant coupling of near-infrared radiation to photonic band structure waveguides,” J. Lightwave Technol. 17, 2050-2057 (1999). [CrossRef]
  14. S. H. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002). [CrossRef]
  15. S. H. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20, 569-572 (2003). [CrossRef]
  16. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866-1878 (1961). [CrossRef]
  17. A. R. P. Rau, “Perspectives on the Fano resonance formula,” Phys. Scr. 69, C10-C13 (2004). [CrossRef]
  18. A. A. Erchak, D. J. Ripin, S. Fan, P. Rakich, J. D. Joannopoulos, E. P. Ippen, G. S. Petrich, and L. A. Kolodziejski, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Appl. Phys. Lett. 78, 563-565 (2001). [CrossRef]
  19. H. Y. Ryu, Y. H. Lee, R. L. Sellin, and D. Bimberg, “Over 30-fold enhancement of light extraction from free-standing photonic crystal slabs with InGaAs quantum dots at low temperature,” Appl. Phys. Lett. 79, 3573-3575 (2001). [CrossRef]
  20. M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308, 1296-1298 (2005). [CrossRef] [PubMed]
  21. V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. H. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express 12, 1575-1582 (2004). [CrossRef] [PubMed]
  22. A. E. Miroshnichenko and Y. S. Kivshar, “Sharp bends in photonic crystal waveguides as nonlinear Fano resonators,” Opt. Express 13, 3969-3976 (2005). [CrossRef] [PubMed]
  23. W. Suh, M. F. Yanik, O. Solgaard, and S. H. Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett. 82, 1999-2001 (2003). [CrossRef]
  24. W. Suh and S. H. Fan, “Mechanically switchable photonic crystal filter with either all-pass transmission or flat-top reflection characteristics,” Opt. Lett. 28, 1763-1765 (2003). [CrossRef] [PubMed]
  25. Y. Kanamori, T. Kitani, and K. Hane, “Control of guided resonance in a photonic crystal slab using microelectromechanical actuators,” Appl. Phys. Lett. 90, 031911 (2007). [CrossRef]
  26. A. Rosenberg, M. W. Carter, J. A. Casey, M. Kim, R. T. Holm, R. L. Henry, C. R. Eddy, V. A. Shamamian, K. Bussmann, S. Shi, and D. W. Prather, “Guided resonances in asymmetrical GaN photonic crystal slabs observed in the visible spectrum,” Opt. Express 13, 6564-6571 (2005). [CrossRef] [PubMed]
  27. O. Kilic, S. Kim, W. Suh, Y. A. Peter, A. S. Sudbo, M. F. Yanik, S. H. Fan, and O. Solgaard, “Photonic crystal slabs demonstrating strong broadband suppression of transmission in the presence of disorders,” Opt. Lett. 29, 2782-2784 (2004). [CrossRef] [PubMed]
  28. T. Prasad, V. L. Colvin, and D. M. Mittleman, “The effect of structural disorder on guided resonances in photonic crystal slabs studied with terahertz time-domain spectroscopy, Opt. Express 15, 16954-16965 (2007). [CrossRef] [PubMed]
  29. V. Pacradouni, W. J. Mandeville, A. R. Cowan, P. Paddon, J. F. Young, and S. R. Johnson, “Photonic band structure of dielectric membranes periodically textured in two dimensions,” Phys. Rev. B 62, 4204-4207 (2000). [CrossRef]
  30. K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. H. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B 73, 115126 (2006). [CrossRef]
  31. Z. P. Jian and D. M. Mittleman, “Characterization of guided resonances in photonic crystal slabs using terahertz time-domain spectroscopy,” J. Appl. Phys. 100, 123113 (2006). [CrossRef]
  32. J. F. Song, R. P. Zaccaria, M. B. Yu, and X. W. Sun, “Tunable Fano resonance in photonic crystal slabs,” Opt. Express 14, 8812-8826 (2006). [CrossRef] [PubMed]
  33. C. Grillet, D. Freeman, B. Luther-Davies, S. Madden, R. McPhedran, D. J. Moss, M. J. Steel, and B. J. Eggleton, “Characterization and modeling of Fano resonances in chalcogenide photonic crystal membranes,” Opt. Express 14, 369-376 (2006). [CrossRef] [PubMed]
  34. M. van Exter and D. R. Grischkowsky, “Characterization of an optoelectronic terahertz beam system,” IEEE Trans. Microwave Theory Tech. 38, 1684-1691 (1990). [CrossRef]
  35. Z. P. Jian, J. Pearce, and D. M. Mittleman, “Two-dimensional photonic crystal slabs in parallel-plate metal waveguides studied with terahertz time-domain spectroscopy,” Semicond. Sci. Technol. 20, S300-S306 (2005). [CrossRef]
  36. T. Prasad, V. L. Colvin, Z. Jian, and D. M. Mittleman, “Superprism effect in a metal-clad terahertz photonic crystal slab,” Opt. Lett. 32, 683-685 (2007). [CrossRef] [PubMed]
  37. N. Jukam and M. S. Sherwin, “Two-dimensional terahertz photonic crystals fabricated by deep reactive ion etching in Si,” Appl. Phys. Lett. 83, 21-23 (2003). [CrossRef]
  38. C. Yee, N. Jukam, and M. Sherwin, “Transmission of single mode ultrathin terahertz photonic crystal slabs,” Appl. Phys. Lett. 91, 194104 (2007). [CrossRef]
  39. D. Grischkowsky, S. Keiding, M. Vanexter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006-2015 (1990). [CrossRef]
  40. W. Axmann and P. Kuchment, “An efficient finite element method for computing spectra of photonic and acoustic band-gap materials: I. Scalar case,” J. Comp. Physiol. 150, 468-481 (1999).
  41. W. R. Frei and H. T. Johnson, “Finite-element analysis of disorder effects in photonic crystals,” Phys. Rev. B 70, 165116 (2004). [CrossRef]
  42. J. A. Deibel, N. Berndsen, K. Wang, and D. M. Mittleman, “Frequency-dependent radiation patterns emitted by THz plasmons on finite length cylindrical metal wires,” Opt. Express 14, 8772-8778 (2006). [CrossRef] [PubMed]
  43. J. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. M. Mittleman, “Finite element method simulations of guided wave phenomena at terahertz frequencies,” Proc. IEEE 95, 1624-1640 (2007). [CrossRef]
  44. W. Suh, O. Solgaard, and S. Fan, “Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs,” J. Appl. Phys. 98, 033102 (2005). [CrossRef]
  45. T. Ochiai and K. Sakoda, “Dispersion relation and optical transmittance of a hexagonal photonic crystal slab,” Phys. Rev. B 63, 125107 (2001). [CrossRef]
  46. Z. Jian and D. M. Mittleman, “Out-of-plane dispersion and homogenization in photonic crystal slabs,” Appl. Phys. Lett. 87, 191113 (2005). [CrossRef]
  47. V. Lousse and J. P. Vigneron, “Use of Fano resonances for bistable optical transfer through photonic crystal films,” Phys. Rev. B 69, 155106 (2004). [CrossRef]
  48. G.Kozlov and A.Volkov, “Coherent source submillimeter wave spectroscopy,” in Millimeter and Submillimeter Wave Spectroscopy of Solids, G.Grüner, ed. (Springer-Verlag, 1998). [CrossRef]
  49. B. Gorshunov, A. Volkov, I. Spektor, A. Prokhorov, A. Mukhin, M. Dressel, S. Uchida, and A. Loidl, “Terahertz BWO spectroscopy,” Int. J. Infrared Millim. Waves 26, 1217-1240 (2005). [CrossRef]
  50. T. W. Crowe, D. W. Porterfield, J. L. Hesler, W. L. Bishop, D. S. Kurtz, and K. Hui, “Terahertz technology for imaging and spectroscopy,” Proc. SPIE 6212, 62120V (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited