OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 4 — Apr. 1, 2008
  • pp: 668–673

Fiber-optic realization of anisotropic depolarizing quantum channels

Michał Karpiński, Czesław Radzewicz, and Konrad Banaszek  »View Author Affiliations


JOSA B, Vol. 25, Issue 4, pp. 668-673 (2008)
http://dx.doi.org/10.1364/JOSAB.25.000668


View Full Text Article

Enhanced HTML    Acrobat PDF (605 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We employed an electrically driven polarization controller to implement anisotropic depolarizing quantum channels for the polarization state of single photons. The channels were characterized by means of ancilla-assisted quantum process tomography using polarization-entangled photons generated in the process of spontaneous parametric downconversion. The demonstrated depolarization method offers good repeatability, low cost, and compatibility with fiber-optic setups. It does not perturb the modal structure of single photons, and therefore can be used to verify experimentally protocols for managing decoherence effects based on multiphoton interference.

© 2008 Optical Society of America

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(260.5430) Physical optics : Polarization
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: July 26, 2007
Revised Manuscript: December 6, 2007
Manuscript Accepted: February 20, 2008
Published: March 31, 2008

Citation
Michał Karpiński, Czesław Radzewicz, and Konrad Banaszek, "Fiber-optic realization of anisotropic depolarizing quantum channels," J. Opt. Soc. Am. B 25, 668-673 (2008)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-25-4-668


Sort:  Year  |  Journal  |  Reset  

References

  1. C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722-725 (1996). [CrossRef] [PubMed]
  2. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge U. Press, 2002), pp. 425-499.
  3. P. G. Kwiat, A. J. Berglund, J. B. Altepeter, and A. G. White, “Experimental verification of decoherence-free subspaces,” Science 290, 498-501 (2000). [CrossRef] [PubMed]
  4. J. B. Altepeter, P. G. Hadley, S. M. Wendelken, A. J. Berglund, and P. G. Kwiat, “Experimental investigation of a two-qubit decoherence-free subspace,” Phys. Rev. Lett. 92, 147901 (2004). [CrossRef] [PubMed]
  5. M. Mohseni, J. S. Lundeen, K. J. Resch, and A. M. Steinberg, “Experimental application of decoherence-free subspaces in an optical quantum-computing algorithm,” Phys. Rev. Lett. 91, 187903 (2003). [CrossRef] [PubMed]
  6. Q. Zhang, J. Yin, T.-Y. Chen, S. Lu, J. Zhang, X.-Q. Li, T. Yang, X.-B. Wang, and J.-W. Pan, “Experimental fault-tolerant quantum cryptography in a decoherence-free subspace,” Phys. Rev. A 73, 020301 (2006). [CrossRef]
  7. M. Ricci, F. De Martini, N. J. Cerf, R. Filip, J. Fiurásek, and C. Macchiavello, “Experimental purification of single qubits,” Phys. Rev. Lett. 93, 170501 (2004). [CrossRef] [PubMed]
  8. T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Demonstration of quantum error correction using linear optics,” Phys. Rev. A 71, 052332 (2005). [CrossRef]
  9. D. Leung, L. Vandersypen, X. Zhou, M. Sherwood, C. Yannoni, M. Kubinec, and I. Chuang, “Experimental realization of a two-bit phase damping quantum code,” Phys. Rev. A 60, 1924-1943 (1999). [CrossRef]
  10. J. W. Pan, C. Simon, C. Brukner, and A. Zeilinger, “Entanglement purification for quantum communication,” Nature 410, 1067-1070 (2001). [CrossRef] [PubMed]
  11. G. Puentes, D. Voigt, A. Aiello, and J. P. Woerdman, “Tunable spatial decoherers for polarization-entangled photons,” Opt. Lett. 31, 2057-2059 (2006). [CrossRef] [PubMed]
  12. A. B. U'Ren, K. Banaszek, and I. A. Walmsley, “Photon engineering for quantum information processing,” Quantum Inf. Comput. 3, 480-502 (2003).
  13. T. S. Humble and W. P. Grice, “Spectral effects in quantum teleportation,” Phys. Rev. A 75, 022307 (2007). [CrossRef]
  14. J.-P. Goure and I. Verrier, Optical Fibre Devices (Institute of Physics, 2002), pp. 152-158.
  15. J. B. Altepeter, D. Branning, E. Jeffrey, T. C. Wei, P. G. Kwiat, R. T. Thew, J. L. O'Brien, M. A. Nielsen, and A. G. White, “Ancilla-assisted quantum process tomography,” Phys. Rev. Lett. 90, 193601 (2003). [CrossRef] [PubMed]
  16. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons”, Phys. Rev. A 60, R773-R776 (1999) [CrossRef]
  17. A. Jamiolkowski, “Linear transformations which preserve trace and positive semidefiniteness of operators,” Rep. Math. Phys. 3, 275-278 (1972). [CrossRef]
  18. L. Yan, Q. Yu, and A. E. Winner, “Uniformly distributed states of polarization on the Poincaré sphere using an improved polarization scrambling scheme,” Opt. Commun. 249, 43-50 (2005). [CrossRef]
  19. K. Perlicki, “Investigation of the state of polarization distribution generated by polarization scramblers on the Poincaré sphere,” Opt. Commun. 252, 43-50 (2005). [CrossRef]
  20. Y. K. Lizé, R. Gomma, R. Kashyap, L. Palmer, and A. E. Willner, “Fast all-fiber polarization scrambling using re-entrant Lefevre controller,” Opt. Commun. 279, 50-52 (2007). [CrossRef]
  21. C. King and M. B. Ruskai, “Minimal entropy of states emerging from noisy quantum channels,” IEEE Trans. Inf. Theory 47, 192-209 (2001). [CrossRef]
  22. M. Horodecki and R. Horodecki, “Information-theoretic aspects of inseparability of mixed states,” Phys. Rev. A 54, 1838-1843 (1996). [CrossRef] [PubMed]
  23. M. Barbieri, F. De Martini, G. Di Nepi, and P. Mataloni, “Generation and characterization of Werner states and maximally entangled mixed states by a universal source of entanglement,” Phys. Rev. Lett. 92, 177901 (2004). [CrossRef] [PubMed]
  24. K. Banaszek, G. M. D'Ariano, M. G. A. Paris, and M. F. Sacchi, “Maximum-likelihood estimation of the density matrix,” Phys. Rev. A 61, 010304 (1999). [CrossRef]
  25. D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited