OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 5 — May. 1, 2008
  • pp: 734–740

Two channels of entangled twin photons generated by quasi-phase-matched spontaneous parametric down-conversion in periodically poled lithium niobate crystals

Shiming Gao and Changxi Yang  »View Author Affiliations

JOSA B, Vol. 25, Issue 5, pp. 734-740 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (607 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose the generation of two-channel time-energy entangled twin photons based on two simultaneous first-order quasi-phase-matched (QPM) spontaneous parametric down-conversion processes in a periodically poled lithium niobate (PPLN) with a monochromatic pump. The theoretical model for the generation of the entangled photons is established, and the analytical solution is obtained in a lossless crystal with an undepleted pump assumption. The generated condition of entangled photons is achieved in terms of the QPM grating period and the pump wavelength. It is shown that two channels of entangled twin photons with different wavelengths can be created by suitably choosing the PPLN grating period once the pump wavelength is fixed, which provides the potential to introduce the wavelength division multiplexed technique into quantum information systems.

© 2008 Optical Society of America

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(270.0270) Quantum optics : Quantum optics

ToC Category:
Quantum Optics

Original Manuscript: August 21, 2007
Revised Manuscript: January 29, 2008
Manuscript Accepted: February 21, 2008
Published: April 16, 2008

Shiming Gao and Changxi Yang, "Two channels of entangled twin photons generated by quasi-phase-matched spontaneous parametric down-conversion in periodically poled lithium niobate crystals," J. Opt. Soc. Am. B 25, 734-740 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Zeilinger, G. Weihs, T. Jennewein, and M. Aspelmeyer, “Happy centenary, photon,” Nature 433, 230-238 (2005). [CrossRef] [PubMed]
  2. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Elbl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575-579 (1997). [CrossRef]
  3. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84, 4737-4740 (2000). [CrossRef] [PubMed]
  4. C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881-2884 (1992). [CrossRef] [PubMed]
  5. J. C. Howell and J. A. Yeazell, “Quantum computation through entangling single photons in multipath interferometers,” Phys. Rev. Lett. 85, 198-201 (2000). [CrossRef] [PubMed]
  6. Y. H. Shih, “Entangled photons,” IEEE J. Sel. Top. Quantum Electron. 9, 1455-1467 (2003). [CrossRef]
  7. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773-R776 (1999). [CrossRef]
  8. M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” IEEE Photon. Technol. Lett. 14, 983-985 (2002). [CrossRef]
  9. J. Fan, A. Dogariu, and L. J. Wang, “Generation of correlated photon pairs in a microstructure fiber,” Opt. Lett. 30, 1530-1532 (2005). [CrossRef] [PubMed]
  10. J. Fulconis, O. Alibart, W. J. Wadsworth, P. St. J. Russell, and J. G. Rarity, “High brightness single mode source of correlated photon pairs using a photonic crystal fiber,” Opt. Express 13, 7572-7582 (2005). [CrossRef] [PubMed]
  11. H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell's inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70, 031802(R) (2004). [CrossRef]
  12. X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005). [CrossRef] [PubMed]
  13. S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26-28 (2001). [CrossRef]
  14. E. J. Mason, M. A. Albota, F. König, and F. N. C. Wong, “Efficient generation of tunable photon pairs at 0.8 and 1.6μm,” Opt. Lett. 27, 2115-2117 (2002). [CrossRef]
  15. B.-S. Shi and A. Tomita, “Highly efficient generation of pulsed photon pairs with bulk periodically poled potassium titanyl phosphate,” J. Opt. Soc. Am. B 21, 2081-2084 (2004). [CrossRef]
  16. A. Yoshizawa, R. Kaji, and H. Tsuchida, “Generation of polarisation-entangled photon pairs at 1550nm using two PPLN waveguides,” Electron. Lett. 39, 621-622 (2003). [CrossRef]
  17. A. Yoshizawa and H. Tsuchida, “Generation of polarization-entangled photon pairs in 1550nm band by a fiber-optic two-photon interferometer,” Appl. Phys. Lett. 85, 2457-2459 (2004). [CrossRef]
  18. M. Pelton, P. Marsden, D. Ljunggren, M. Tengner, A. Karlsson, A. Fragemann, C. Canalias, and F. Laurell, “Bright, single-spatial-mode source of frequency non-degenerate, polarization-entangled photon pairs using periodically poled KTP,” Opt. Express 12, 3573-3580 (2004). [CrossRef] [PubMed]
  19. D. Ljunggren, M. Tengner, P. Marsden, and M. Pelton, “Theory and experiment of entanglement in a quasi-phase-matched two-crystal source,” Phys. Rev. A 73, 032326 (2006). [CrossRef]
  20. T. Nosaka, B. K. Das, M. Fujimura, and T. Suhara, “Cross-polarized twin photon generation device using quasi-phase matched LiNbO3 waveguide,” IEEE Photon. Technol. Lett. 18, 124-126 (2006). [CrossRef]
  21. C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69, 013807 (2004). [CrossRef]
  22. O. Pfister, S. Feng, G. Jennings, R. Pooser, and D. Xie, “Multipartite continuous-variable entanglement from concurrent nonlinearities,” Phys. Rev. A 70, 020302(R) (2004). [CrossRef]
  23. S. Gao and C. Yang, “Prediction of multichannel polarization-entangled photon pairs in a single periodically poled lithium niobate with a monochromatic pump,” Opt. Lett. 32, 2653-2655 (2007). [CrossRef] [PubMed]
  24. J. E. Sharping, J. Chen, X. Li, P. Kumar, and R. S. Windeler, “Quantum-correlated twin photons from microstructure fiber,” Opt. Express 12, 3086-3094 (2004). [CrossRef] [PubMed]
  25. K. Gallo and G. Assanto, “Analysis of lithium niobate all-optical wavelength shifters for the third spectral window,” J. Opt. Soc. Am. B 16, 741-753 (1999). [CrossRef]
  26. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506-520 (2002). [CrossRef]
  27. In this case, the classical method will be close to the quantum process since one photon is easy to obtain either from the nature or from the pump photon randomly splitting. The number of the initial signal photons does not make any difference in our calculation.
  28. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, 1991).
  29. S. Gao, C. Yang, D. Chen, S. Qin, and Y. Gao, “Bandwidth enhancement methods of telecom-region entangled twin photons via quasi-phase-matched spontaneous parametric down-conversion,” J. Nonlinear Opt. Phys. Mater. 15, 513-521 (2006). [CrossRef]
  30. T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped gratings,” IEEE J. Quantum Electron. 26, 1265-1276 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited