OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 5 — May. 1, 2008
  • pp: 818–824

Generation of terahertz pulses from tightly focused single near-infrared pulses in double-plasmon waveguides

Vladimir A. Kukushkin  »View Author Affiliations


JOSA B, Vol. 25, Issue 5, pp. 818-824 (2008)
http://dx.doi.org/10.1364/JOSAB.25.000818


View Full Text Article

Enhanced HTML    Acrobat PDF (134 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The difference-frequency (DF) nonlinear mixing terahertz (THz) pulse generation from Fourier components of a single tightly focused near-infrared pump pulse in a double-plasmon waveguide is considered. Under an appropriate choice of its parameters, such a waveguide ensures an efficient transverse confinement of the THz field and provides low dispersion of the THz mode refraction index. As a result, the generation of short powerful single-cycle THz pulses becomes possible. In comparison with traditional (without waveguiding) schemes of DF THz pulse generation from a single pump pulse (optical rectification), the proposed method allows one to significantly (by 50 times) reduce the pump pulse power while providing the same THz pulse output intensity and pump-THz conversion efficiency.

© 2008 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes

ToC Category:
Nonlinear Optics

History
Original Manuscript: October 15, 2007
Revised Manuscript: January 24, 2008
Manuscript Accepted: February 28, 2008
Published: April 28, 2008

Citation
Vladimir A. Kukushkin, "Generation of terahertz pulses from tightly focused single near-infrared pulses in double-plasmon waveguides," J. Opt. Soc. Am. B 25, 818-824 (2008)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-25-5-818


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. Giles Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156-159 (2002). [CrossRef] [PubMed]
  2. B. S. Williams, S. Kumar, H. Callebaut, and Q. Hu, “Terahertz quantum-cascade laser at 100μm using metal waveguide for mode confinement,” Appl. Phys. Lett. 83, 2124-2126 (2003). [CrossRef]
  3. S. Dhillon, J. Alton, S. Barbieri, C. Sirtori, A. de Rossi, M. Calligaro, H. E. Beere, and D. Ritchie, “Ultralow threshold current terahertz quantum cascade lasers based on double-metal buried strip waveguides,” Appl. Phys. Lett. 87, 071101 (2005). [CrossRef]
  4. A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86, 121114 (2005). [CrossRef]
  5. L. Duvillaret, F.-F. Garet, J.-F. Roux, and J.-L. Coutaz, “Analytical modeling and optimization of terahertz time-domain spectroscopy experiments, using photoswitches as antennas,” IEEE J. Sel. Top. Quantum Electron. 7, 615-623 (2001). [CrossRef]
  6. A. G. Davies, E. H. Linfield, and M. B. Johnston, “The development of terahertz sources and their applications,” Phys. Med. Biol. 47, 3679-3689 (2002). [CrossRef] [PubMed]
  7. H. Roskos, M. Nuss, J. Shah, K. Leo, D. Miller, A. Fox, S. Schmitt-Rink, and K. Kohler, “Coherent submillimeter-wave emission from charge oscillations in a double-well potential,” Phys. Rev. Lett. 68, 2216-2219 (1992). [CrossRef] [PubMed]
  8. P. Planken, M. Nuss, I. Brener, K. Goossen, M. Luo, S. Chuang, and L. Pfeiffer, “Terahertz emission in single quantum wells after coherent optical excitation of light hole and heavy hole excitons,” Phys. Rev. Lett. 69, 3800-3803 (1992). [CrossRef] [PubMed]
  9. M. Hangyo, S. Tomozawa, Y. Murakami, M. Tonouchi, M. Tani, Z. Wang, K. Sakai, and S. Nakashima, “Terahertz radiation from superconducting YBa2Cu3O7-thin films excited by femtosecond optical pulses, Appl. Phys. Lett. 69, 2122-2124 (1996). [CrossRef]
  10. C. Toth, J. van Tilborg, C. G. Geddes, G. Fubiani, C. B. Schroeder, E. Esarey, J. Faure, G. Dugan, and Wm. P. Leemans, “Powerful pulsed THz radiation from laser-accelerated relativistic electron bunches,” Proc. SPIE 5448, 491-504 (2004). [CrossRef]
  11. D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, “Cherenkov radiation from femtosecond optical pulses in electro-optic media,” Phys. Rev. Lett. 53, 1555-1558 (1984). [CrossRef]
  12. Z.-M. Sheng, H.-C. Wu, K. Li, and J. Zhang, “Terahertz radiation from the vacuum-plasma interface driven by ultrashort intense laser pulses,” Phys. Rev. E 69, 025401R (2004). [CrossRef]
  13. Z.-M. Sheng, K. Mima, J. Zhang, and H. Sanuki, “Emission of electromagnetic pulses from laser wakefields through linear mode conversion,” Phys. Rev. Lett. 94, 095003 (2005). [CrossRef] [PubMed]
  14. Z.-M. Sheng, K. Mima, and J. Zhang, “Powerful terahertz emission from laser wake fields excited in inhomogeneous plasmas,” Phys. Plasmas 12, 123103 (2005). [CrossRef]
  15. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).
  16. T. J. Carrig, G. Rodriguez, T. S. Clement, A. J. Taylor, and K. R. Stewart, “Scaling of terahertz radiation via optical rectification in electro-optic crystals,” Appl. Phys. Lett. 66, 121-123 (1995). [CrossRef]
  17. A. G. Stepanov, J. Kuhl, I. Z. Kozma, E. Riedle, G. Almasi, and J. Hebling, “Scaling up the energy of THz pulses created by optical rectification,” Opt. Express 13, 5762-5768 (2005). [CrossRef] [PubMed]
  18. K.Sakai and M.Tani, “Introduction to terahertz pulses,” in Terahertz Optoelectronics, K.Sakai, ed. (Springer, 2005). [CrossRef]
  19. V. Kukushkin, “Efficient generation of terahertz pulses from single infrared beams in C/GaAs/C waveguiding heterostructures, J. Opt. Soc. Am. B 23, 2528-2534 (2006). [CrossRef]
  20. J.-P. Caumes, L. Videau, C. Rouyer, and E. Freysz, “Kerr-like nonlinearity induced via terahertz generation and the electro-optical effect in zinc blende crystals,” Phys. Rev. Lett. 89, 047401 (2002). [CrossRef] [PubMed]
  21. A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321-2323 (1996). [CrossRef]
  22. M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, and D. Ritchie, “Low-threshold terahertz quantum-cascade lasers,” Appl. Phys. Lett. 81, 1381-1383 (2002). [CrossRef]
  23. A. N. Pikhtin and A. D. Yas'kov, “Refraction index dispersion in semiconductors with diamond and zinc blend structures,” Sov. Phys. Semicond. 12, 622-626 (1978).
  24. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  25. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehart and Winston, 1976).
  26. M. K. Barnoski, Introduction to Integrated Optics (Plenum Press, 1974).
  27. R. W. Boyd, Nonlinear Optics (Academic, 1992).
  28. L. A. Vainshtein, Electromagnetic Waves (Sov. Radio, 1988) (In Russian).
  29. C. Flytzanis, “Infrared dispersion of second-order electric susceptibilities in semiconducting compounds,” Phys. Rev. B 6, 1264-1290 (1972). [CrossRef]
  30. Y. J. Ding, “Quasi-single-cycle terahertz pulses based on broad-phase-matched difference-frequency generation in second-order nonlinear medium: high output powers and conversion efficiencies,” IEEE J. Sel. Top. Quantum Electron. 10, 1171-1179 (2004). [CrossRef]
  31. M. J. Weber, Handbook of Optical Materials (CRC Press, 2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited