OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 5 — May. 1, 2008
  • pp: 865–876

Enhancement of the simultaneous absorption of two photons for pulsed laser–molecule interactions

William J. Meath  »View Author Affiliations


JOSA B, Vol. 25, Issue 5, pp. 865-876 (2008)
http://dx.doi.org/10.1364/JOSAB.25.000865


View Full Text Article

Enhanced HTML    Acrobat PDF (205 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The dependence of the population of the target state, and the excitation cross section and rate, on pulse duration Q, laser intensity I, and a molecular matrix element A is discussed for two-photon molecular excitation. Perturbative and rotating wave approximation (RWA) expressions for the observables are obtained; the latter are used to discuss the validity of the former. For example, the perturbative cross section and rate increasingly underestimate the RWA results as I increases for given A and Q. Two- and ten-level model dipolar molecules are employed for illustrative purposes. The results are relevant for understanding two-photon excitation processes and their enhancement and include discussions of the roles the permanent dipole- and virtual-state mechanisms in such processes and of the validity of using intensity-independent cross sections to gauge the strength of such excitations.

© 2008 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.4180) Nonlinear optics : Multiphoton processes
(190.4710) Nonlinear optics : Optical nonlinearities in organic materials

ToC Category:
Nonlinear Optics

History
Original Manuscript: December 11, 2007
Revised Manuscript: February 25, 2008
Manuscript Accepted: February 25, 2008
Published: April 30, 2008

Citation
William J. Meath, "Enhancement of the simultaneous absorption of two photons for pulsed laser-molecule interactions," J. Opt. Soc. Am. B 25, 865-876 (2008)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-25-5-865


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73-76 (1990). [CrossRef] [PubMed]
  2. C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: new spectral window for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. U.S.A. 93, 10763-10768 (1996). [CrossRef] [PubMed]
  3. A. Jenei, A. K. Krisch, V. Subramaniam, D. J. Arndt-Jovin, and T. M. Jovin, “Picosecond multiphoton scanning near-field optical microscopy,” Biophys. J. 76, 1092-1100 (1999). [CrossRef] [PubMed]
  4. K. König, “Multiphoton microscopy in life science,” J. Microsc. 200, 83-104 (2000). [CrossRef] [PubMed]
  5. A.Diaspro, ed., Confocal and Two-Photon Microscopy (Wiley, 2002).
  6. J. M. Dela Cruz, I. Pastirk, M. Comstock, V. V. Lozovoy, and M. Dantus, “Use of coherent control methods through scattering biological tissue to achieve functional imaging,” Proc. Natl. Acad. Sci. U.S.A. 101, 16996-17001 (2004). [CrossRef] [PubMed]
  7. B. C. Wilson and M. S. Patterson, “The physics of photodynamic therapy,” Phys. Med. Biol. 31, 327-360 (1986). [CrossRef] [PubMed]
  8. T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, and Q. Peng, “Photodynamic Therapy,” J. Natl. Cancer Inst. 90, 889-905 (1998). [CrossRef] [PubMed]
  9. D. T. Cramb and R. Goyan, “Dynamic behaviour of photosensitizers after multiphoton excitation,” Proc. SPIE 4262, 41-47 (2001). [CrossRef]
  10. M. Khurana, A. Karotki, H. Collins, H. L. Anderson, and B. C. Wilson, “In vitro studies of the efficiency of two-photon activation of photodynamic therapy agents,” Proc. SPIE 6343, 634306 (2006). [CrossRef]
  11. A. Karotki, M. Khurana, J. P. Lepock, and B. C. Wilson, “Simultaneous two-photon excitation of photofrin in relation to photodynamic therapy,” Photochem. Photobiol. 82, 443-452 (2006). [CrossRef] [PubMed]
  12. K. S. Samkoe, A. A. Clancy, A. Karotki, B. C. Wilson, and D. T. Cramb, “Complete blood vessel occlusion in the chick chorioallantoic membrane using two-photon excitation photodynamic therapy: implications for treatment of wet age-related macular degeneration,” J. Biomed. Opt. 12, 034025 (2007). [CrossRef] [PubMed]
  13. M. Göppert-Mayer, “Uber elementarakte mit zwei quantensprüngen,” Ann. Phys. 9, 273-295 (1931). [CrossRef]
  14. B. Dick and G. Hohlneicher, “Importance of initial and final states as intermediate states in two-photon spectroscopy of polar molecules,” J. Chem. Phys. 76, 5755-5760 (1982). [CrossRef]
  15. W. J. Meath and E. A. Power, “On the importance of permanent moments in multiphoton absorption using perturbation theory,” J. Phys. B 17, 763-781 (1984). [CrossRef]
  16. M. A. Kmetic and W. J. Meath, “Permanent dipole moments and multi-photon resonances,” Phys. Lett. 108A, 340-343 (1085). [CrossRef]
  17. B. N. Jagatap and W. J. Meath, “Contributions of permanent dipole moments to molecular multiphoton excitation cross sections,” J. Opt. Soc. Am. B 19, 2673-2681 (2002). [CrossRef]
  18. W. J. Meath, B. N. Jagatap, and A. E. Kondo, “The mechanisms for, and the enhancement of, the simultaneous absorption of two photons by molecules,” J. Phys. B 39, S605-S620 (2006). [CrossRef]
  19. S. H. Nilar, A. J. Thakkar, A. E. Kondo, and W. J. Meath, “Electronic energies, dipole moment matrix elements, and static polarizabilities and hyperpolarizabilities for some diphenyl molecules,” Can. J. Chem. 71, 1663-1671 (1993). [CrossRef]
  20. A. E. Kondo, W. J. Meath, S. H. Nilar, and A. J. Thakkar, “Pump-probe studies of the effects of permanent dipoles in one- and two-colour molecular excitations,” Chem. Phys. 186, 375-394 (1994). [CrossRef]
  21. J. L. Oudar and D. S. Chemla, “Hyperpolarizabilities of the nitroanilines and their relation to the excited state dipole moment,” J. Chem. Phys. 66, 2664-2668 (1977). [CrossRef]
  22. M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Wu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653-1656 (1998). [CrossRef] [PubMed]
  23. C. K. Wang, P. Macak, Y. Luo, and H. Ågren, “Effects of π centres and symmetry on two-photon absorption cross sections of organic chromophores,” J. Chem. Phys. 114, 9813-9820 (2001). [CrossRef]
  24. G. S. He, T. C. Lin. J. Dai, P. N. Prasad, R. Kannan, A. G. Dombroskie, R. A. Vaia, and L. S. Tan, “Degenerate two-photon absorption spectral studies of highly two-photon active organic chromophores,” J. Chem. Phys. 120, 5275-5284 (2004). [CrossRef] [PubMed]
  25. E. Zojer, D. Beljonne, P. Pacher, and J. L. Brédas, “Two-photon absorption in quadrupolar π-conjugated molecules: influence of the nature of the conjugated bridge and the donor-acceptor separation,” Chem.-Eur. J. 10, 2668-2680 (2004). [CrossRef] [PubMed]
  26. C. W. Spangler, J. R. Starkey, F. Meng, A. Gong, M. Drobizhev, A. Rabane, and B. Moss, “Targeted two-photon photodynamic therapy for the treatment of subcutaneous tumors,” Proc. SPIE 5689, 141-148 (2005). [CrossRef]
  27. S. R. Marder, “Organic nonlinear optical materials: where we have been and where we are going,” Chem. Commun. (Cambridge) 2006, 131-134 (2006). [CrossRef]
  28. J. Fu, L. A. Padilha, D. J. Hagan, E. W. Van Stryland, O. V. Przhonska, M. V. Bondar, Y. L. Slominsky, and A. D. Kachkovski, “Molecular structure-two-photon absorption property relations for polymethine dyes,” J. Opt. Soc. Am. B 24, 56-66 (2007). [CrossRef]
  29. N. Rosen and C. Zerner, “Double Stern-Gerlach experiment and related collision phenomena,” Phys. Rev. 40, 502-507 (1932). [CrossRef]
  30. J. H. Shirley, “Some causes of resonant frequency shifts in atomic beam machines. I. Shifts due to other frequencies of excitation,” J. Appl. Phys. 34, 783-788 (1963). [CrossRef]
  31. J. H. Shirley, “Solution of the Schrödinger equation with a Hamiltonian periodic in time,” Phys. Rev. B 138, 979-987 (1965). [CrossRef]
  32. A. Bambini and M. Lindberg, “Transition probability of a two-level atom interacting with a time-symmetric pulse,” Phys. Rev. A 30, 794-802 (1984). [CrossRef]
  33. B. W. Shore, The Theory of Coherent Atomic Excitations (Wiley, 1990), Vols. I and II.
  34. A. Brown and W. J. Meath, “Role of permanent dipoles and orientational averaging in the phase control of two-colour, simultaneous one- and three-photon molecular excitations,” Phys. Rev. A 53, 2571-2586 (1996). [CrossRef] [PubMed]
  35. A. Salem and W. J. Meath, “On enantiomeric excesses obtained from racemic mixtures by using circularly polarized pulsed lasers of varying duration,” Chem. Phys. 288, 115-129 (1998). [CrossRef]
  36. A. Brown, W. J. Meath and P. Tran, “Rotating-wave approximation for the interaction of a pulsed laser with a two-level system possessing permanent dipole moments,” Phys. Rev. A 63, 013403 (2000). [CrossRef]
  37. B. N. Jagatap and W. J. Meath, “On the control of the production of hydrogen atom 2s-2p resonance hybrids through the use of competitive one- and two-photon transitions from the ground state,” J. Chem. Phys. 113, 1501-1507 (2000). [CrossRef]
  38. P. W. Langhoff, S. T. Epstein, and M. Karplus, “Aspects of time-dependent perturbation theory,” Rev. Mod. Phys. 44, 602-644 (1972). [CrossRef]
  39. W. Gautschi, “Error function and Fresnal integrals,” in Handbook of Mathematical Functions, M.Abramowitz and I.Stegun, eds. (National Bureau of Standards, 1970), Chap. 7.
  40. R. P. Birge, “One-photon and two-photon excitation spectroscopy,” in Ultrasensitive Laser Spectroscopy, D.S.Kliger, ed. (Academic, 1983), pp. 109-174.
  41. W. J. Meath, B. N Jagatap, and A. E. Kondo, are preparing a paper to be called “Effective two-level RWA for two-photon transitions in many-level molecules: the effects of permanent dipole moments.”
  42. F. W. J. Oliver, “Bessel functions of integer order,” in Handbook of Mathematical Functions, M.Abramowitz and I.Stegun, eds. (National Bureau of Standards, 1970), Chap. 9.
  43. W. J. Meath, R. A. Thuraisingham, and M. A. Kmetic, “Applications of the Riemann product integral method to spectroscopic problems,” Adv. Chem. Phys. 73, 307-349 (1989). [CrossRef]
  44. T. Hattori and T. Kobayashi, “Bloch-Siegert shift in giant dipole molecules,” Phys. Rev. A 35, 2733-2736 (1987). [CrossRef] [PubMed]
  45. M. A. Kmetic and W. J. Meath, “Perturbative corrections to the rotating-wave approximation for two-level molecules and the effects of permanent dipoles on single-photon and multiphoton spectra,” Phys. Rev. A 41, 1556-1568 (1990). [CrossRef] [PubMed]
  46. I. Schek, J. Jortner, and M. L. Sage, “Application of the Magnus expansion for higher-order multiphoton excitation,” Chem. Phys. 59, 11-27 (1981). [CrossRef]
  47. M. Quack, “Reaction dynamics and statistical mechanics of the preparation of highly excited states by intense infrared radiation,” Adv. Chem. Phys. 50, 395-473 (1982). [CrossRef]
  48. K. B. Whaley and J. C. Light, “Rotating-frame transformations: a new approximation for multiphoton absorption and dissociation in laser fields,” Phys. Rev. A 29, 1188-1207 (1984). [CrossRef]
  49. S. Nakai and W. J. Meath, “The rotating wave approximation including the incorporation and importance of diagonal dipole moment matrix elements, for infrared multiphoton excitations,” J. Chem. Phys. 96, 4991-5008 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited