OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 5 — May. 1, 2008
  • pp: 884–896

Characterization and comparison of Yb 3 + -doped YA 1 O 3 perovskite crystals (Yb:YAP) with Yb 3 + -doped Y 3 Al 5 O 12 garnet crystals (Yb:YAG) for laser application

G. Boulon, Y. Guyot, H. Canibano, S. Hraiech, and A. Yoshikawa  »View Author Affiliations

JOSA B, Vol. 25, Issue 5, pp. 884-896 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (944 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



High-optical-quality single crystals of Yb 3 + -doped YAlO 3 perovskite ( Yb 3 + : YAP ) were grown by the Czochralski (CZ) method and characterized. From polarized absorption and emission spectra, assignment of the Yb 3 + energy levels was proposed. Yb 3 + concentration dependence of experimental decay times allows us to study concentration quenching and suggests both strong radiative and nonradiative energy transfers, from Yb 3 + ions to impurities, well described by a limited diffusion model. Yb 3 + : YAP crystal is a potentially useful polarized laser gain medium in laser-diode-pumped solid-state configurations. 5.7 at. % Yb 3 + optimum concentration was deduced by prediction of laser performances. In addition, thermal properties and figure of merit, which is defined from our own model taking into account only spectroscopic data, were also compared with those of Yb 3 + -doped YAG.

© 2008 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3580) Lasers and laser optics : Lasers, solid-state
(160.0160) Materials : Materials
(300.0300) Spectroscopy : Spectroscopy
(300.6250) Spectroscopy : Spectroscopy, condensed matter
(140.3615) Lasers and laser optics : Lasers, ytterbium

ToC Category:
Lasers and Laser Optics

Original Manuscript: November 26, 2007
Revised Manuscript: February 19, 2008
Manuscript Accepted: February 27, 2008
Published: April 30, 2008

G. Boulon, Y. Guyot, H. Canibano, S. Hraiech, and A. Yoshikawa, "Characterization and comparison of Yb3+-doped YA1O3 perovskite crystals (Yb:YAP) with Yb3+-doped Y3Al5O12 garnet crystals (Yb:YAG) for laser application," J. Opt. Soc. Am. B 25, 884-896 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Yoshikawa, G. Boulon, L. Laversenne, H. Canibano, K. Lebbou, A. Collombet, Y. Guyot, and T. Fukuda, “Growth and spectroscopic analysis of Yb3+-doped Y 3 Al 5 O 12 fiber single crystals,” J. Appl. Phys. 94, 5479-5488 (2003). [CrossRef]
  2. G. Boulon, “Why so deep research on Yb3+-doped optical inorganic materials?” J. Alloys Compd. 451, 1-11 (2008). [CrossRef]
  3. Y. Guyot, H. Canibano, C. Goutaudier, A. Novoselov, A. Yoshikawa, T. Fukuda, and G. Boulon, “Yb3+-doped Gd3Ga5O12 garnet single crystals grown by the micro-pulling-down technique for laser application. Part I: Spectroscopic properties and assignment of energy levels,” Opt. Mater. 27, 1658-1663 (2005). [CrossRef]
  4. Y. Guyot, H. Canibano, C. Goutaudier, A. Novoselov, A. Yoshikawa, T. Fukuda, and G. Boulon, “Yb3+-doped Gd3Ga5O12 garnet single crystals grown by the micro-pulling down technique for laser application. Part 2: Concentration quenching analysis and laser optimization,” Opt. Mater. 28, 1-8 (2006). [CrossRef]
  5. A. Brenier, Y. Guyot, H. Canibano, G. Boulon, A. Ródenas, D. Jaque, A. Eganyan, and A. G. Petrosyan, “Growth spectroscopic, and laser properties of Yb3+-doped Lu3Al5O12 garnet crystal,” J. Opt. Soc. Am. B 23, 676-683 (2006). [CrossRef]
  6. G. Boulon, L. Laversenne, C. Goutaudier, Y. Guyot, and M. T. Cohen-Adad, “Radiative and non-radiative energy transfers in Yb3+-doped sesquioxide and garnet laser crystals from a combinatorial approach based on gradient concentration fibers,” J. Lumin. 102, 417-425 (2003). [CrossRef]
  7. M. Ito, C. Goutaudier, Y. Guyot, K. Lebbou, T. Fukuda, and G. Boulon, “Crystal growth Yb3+ spectroscopy, concentration quenching analysis and potentiality of laser emission in Ca1-XYbXF2+X,” J. Phys.: Condens. Matter 16, 1501-1521 (2004). [CrossRef]
  8. G. Boulon, Y. Guyot, M. Ito, A. Bensalah, C. Goutaudier, G. Panczer, and J. C. Gâcon “From optical spectroscopy to a concentration quenching model and a theoretical approach to laser optimization for Yb3+-doped YLiF4 crystals,” Mol. Phys. 102, 1119-1132 (2004). [CrossRef]
  9. M. Ito, G. Boulon, A. Bensalah, Y. Guyot, C. Goutaudier, and H. Sato “Spectroscopic properties, concentration quenching, and prediction of infrared laser emission of Yb3+-doped KY3F10 cubic crystal,” J. Opt. Soc. Am. B 24, 3023-3033 (2007). [CrossRef]
  10. G. A. Massey, “Measurement of devices parameters for Nd:YAlO3 lasers,”I IEEE J. Quantum Electron. 8, 669-674 (1972). [CrossRef]
  11. M. J. Weber, “Optical spectra of Ce3+ and Ce3+-sensitized fluorescence in YAlO3,” J. Appl. Phys. 44, 3205-3208 (1973). [CrossRef]
  12. T. Takeda, T. Miyata, F. Muramatsu, and T. Tomiki, “Fast decay U.V. Phosphor-YAlO3:Ce,” J. Electrochem. Soc. 127, 438-444 (1980). [CrossRef]
  13. M. Nikl, “Wide band gap scintillation materials: progress in the technology and material understanding,” Phys. Status Solidi A 178, 595-601 (2000). [CrossRef]
  14. S. Belogurov, G. Bressi, G. Carugno, M. Moszynski, W. Czarnacki, M. Kapusta, and M. Szawlowski, “Characterization of Yb:YAG and Yb:YAP scintillators by means of LAAPD at temperature around 100K,” Nucl. Instrum. Methods Phys. Res. A 496, 385-404 (2003). [CrossRef]
  15. R. Ifflander, Solid-State Lasers for Materials Processing, Fundamental Relations and Technical Realizations (Springer-Verlag, 2001).
  16. M. J. Weber, M. Bass, and K. Andringa, “Czochralski growth and properties of YAlO3 laser crystals,” Appl. Phys. Lett. 15, 342-345 (1969). [CrossRef]
  17. I. A. Kamenskikh, N. Guerassimova, C. Dujardin, N. Garnier, G. Ledoux, C. Pedrini, M. Kirm, A. Petrosyan, and D. Spassky, “Charge transfer fluorescence and f-f luminescence in ytterbium compounds,” Opt. Mater. 24, 267-274 (2003). [CrossRef]
  18. I. A. Kamenskikh, C. Dujardin, N. Garnier, N. Guerassimova, G. Ledoux, V. Mikhailin, C. Pedrini, A. Petrosyan, and A. Vasil'ev, “Temperature dependence of the charge transfer and f-f luminescence of Yb3+ in garnets and YAP,” J. Phys.: Condens. Matter 17, 5587-5594 (2005). [CrossRef]
  19. A. Yoshikawa, H. Ogino, J. B. Shim, M. Nikl, N. Solovieva, and T. Fukuda, “Growth and luminescent properties of Yb3+-doped oxide single crystals for scintillator application,” Radiat. Meas. 38, 467-470 (2004). [CrossRef]
  20. J. B. Shim, A. Yoshikawa, M. Nikl, N. Solovieva, J. Pejchal, D. H. Yoon, and T. Fukuda, “Growth and characterization of Yb3+-doped YAlO3 fiber single crystals grown by the modified micro-pulling-down method,” J. Cryst. Growth 256, 298-304 (2003). [CrossRef]
  21. J. B. Shim, A. Yoshikawa, T. Fukuda, J. Pejchal, M. Nikl, N. Sarukura, and D. H. Yoon, “Growth and charge transfer luminescence of Yb3+-doped YAlO3 single crystals,” J. Appl. Phys. 95, 3063-3068 (2004). [CrossRef]
  22. A. Yoshikawa, H. Ogino, J. B. Shim, V. V. Kochurikin, M. Nikl, N. Solovieva, S. Ono, N. Sarukura, M. Kikuchi, and T. Fukuda, “Growth and scintillation properties of Yb doped aluminate, vanadate and silicate single crystals,” Opt. Mater. 26, 529-534 (2004). [CrossRef]
  23. L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb[3+] doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179-1191 (1993). [CrossRef]
  24. P.-H. Haumesser, R. Gaume, B. Viana, E. Antic-Fidancev, and D. Vivien, “Spectroscopic and crystal field analysis of new Yb-doped laser materials,” J. Phys.: Condens. Matter 13, 5427-5447 (2001). [CrossRef]
  25. D. S. Sumida and T. Y. Fan, “Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media,” Opt. Lett. 19, 1343-1345 (1994). [CrossRef] [PubMed]
  26. N. Uehara, K. Ueda, and Y. Kubota, “Spectroscopic measurement of a high-concentration Yb3+:LiYF 4 crystal,” Jpn. J. Appl. Phys., Part 1 35, L499-L501 (1996). [CrossRef]
  27. M. P. Hehlen, “Effect of radiation trapping on measured excited-state lifetimes in solids,” in OSA TOPS on Advanced Solid-State Lasers, S.A.Payne and C.Pollock, Eds., Vol. 1 (Optical Society of America, 2006) p. 530.
  28. H. P. Christensen, D. R. Gabbe, and H. P. Jenssen, “Fluorescence lifetimes for neodymium-doped yttrium aluminum garnet and yttrium oxide powders,” Phys. Rev. B 25, 1467-1473 (1982). [CrossRef]
  29. H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 105-116 (1997). [CrossRef]
  30. D. Fagundes-Peters, N. Martynyuk, K. Lünstedt, V. Peters, K. Petermann, G. Huber, S. Basun, V. Laguta, and A. Hofstaetter, “High quantum efficiency YbAG-crystals,” J. Lumin. 125, 238-247 (2007). [CrossRef]
  31. X. Zeng, G. Zhao, X. Xu, H. Li, J. Xu, Z. Zhao, X. He, H. Pang, M. Y. Jie, and C. Yan, “Comparison of spectroscopic parameters of 15at%Yb:YAlO3 and 15at%Yb:Y3Al5O12,” J. Cryst. Growth 274, 106-112 (2005). [CrossRef]
  32. X. Wang, X. Xu, Z. Zhao, B. Jiang, J. Xu, G. Zhao, P. Deng, G. Bourdet, and J.-C. Chanteloup, “Comparison of fluorescence spectra of Yb:Y3Al5O12 and Yb:YAlO3 single crystals,” Opt. Mater. 29, 1662-1666 (2007). [CrossRef]
  33. E. Nakazawa and S. Shionoya, “Cooperative luminescence in YbPO4,” Phys. Rev. Lett. 25, 1710-1712 (1970). [CrossRef]
  34. Y. Guyot, R. Moncorgé, L. D. Merkle, A. Pinto, B. McIntosh, and H. Verdun, “Luminescence properties of Y2O3 single crystals doped with Pr3+ or Tm3+ and codoped with Yb3+, Tb3+ or Ho3+ ions,” Opt. Mater. 5, 127-136 (1996). [CrossRef]
  35. Y. Dong, G. Zhou, J. Xu, G. Zhao, F. Su, L. Su, G. Zhang, D. Zhang, H. Li, and J. L. Si, “Cooperative and charge transfer luminescence in Yb3+-doped yttrium aluminum perovskite (YAlO3),” J. Cryst. Growth 289, 676-680 (2006). [CrossRef]
  36. P. Yang, P. Deng, and Z. Yin, “Concentration quenching in Yb:YAG,” J. Lumin. 97, 51-54 (2002). [CrossRef]
  37. F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, “Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3,” Opt. Mater. 24, 103-109 (2003). [CrossRef]
  38. F. Auzel, “Materials for ionic solid state lasers,” in Spectroscopy of Solid-State Laser-Type Materials, B.DiBartolo, ed. (Plenum, 1987), p. 293. [CrossRef]
  39. M. J. Weber, “Luminescence decay by energy migration and transfer: observation of diffusion-limited relaxation,” Phys. Rev. B 4, 2932-2939 (1971). [CrossRef]
  40. T. Taira and M. Tsunekane, “High-power edge pumped Yb:YAG single crystal/YAG ceramics hybrid microchip laser,” Proc. SPIE 6216, 621607 (2006). [CrossRef]
  41. M. Tsunekane and T. Taira, “High-power operation of diode edge-pumped, glue-bonded, composite Yb:Y3Al5O12 microchip laser with ceramic, undoped YAG pump light-guide,” Jpn. J. Appl. Phys., Part 2 44, L 1164-L 1167 (2005). [CrossRef]
  42. Kuleshov, from Minsk at the ICONO/LAT 2007 http://www1.ilc.by/news/news-002.html (May 2007).
  43. A. Brenier and G. Boulon, “Overview of the best Yb3+-doped laser crystals,” J. Alloys Compd. 323-324, 210-213 (2002). [CrossRef]
  44. A. Brenier and G. Boulon, “New criteria to choose the best Yb3+-doped laser crystals,” Europhys. Lett. 55, 647-652 (2001). [CrossRef]
  45. W. P. Risk, “Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses,” J. Opt. Soc. Am. B 5, 1412-1423 (1988). [CrossRef]
  46. T. Taira, W. M. Tulloch, and R. L. Byer, “Modeling of quasi-three-level lasers and operation of CW Yb:YAG lasers,” Appl. Opt. 36, 1867-1874 (1997). [CrossRef] [PubMed]
  47. S. S. Ballard and J. S. Browle, Handbook of Laser Science and Technology, Vol. IV, Optical Materials, Part 2 (CRC Press, 1986), p. 49.
  48. J. Petit, “Monocristaux dopés ytterbium et matériaux assemblés pour lasers de fortes puissances,” Ph.D. dissertation (Université Pierre and Marie Curie-Paris VI, 2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited