OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 6 — Jun. 1, 2008
  • pp: 1002–1010

Multifrequency mode-locked lasers

Edward D. Farnum and J. Nathan Kutz  »View Author Affiliations


JOSA B, Vol. 25, Issue 6, pp. 1002-1010 (2008)
http://dx.doi.org/10.1364/JOSAB.25.001002


View Full Text Article

Enhanced HTML    Acrobat PDF (858 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A theoretical model is constructed that describes the operation of a pulsed mode-locked laser simultaneously operating at N frequency channels. The model, which is a combination of standard WDM interactions in the canonical master mode-locking model subject to both self- and cavity-saturating gain effects, results in mode-locking dynamics that qualitatively describe the N-frequency channel operation. It is further in agreement with the observed experimental dual-frequency ( N = 2 ) laser operation. In the model, it is the combination of self- and cavity-gain saturation that simultaneously allows for mode-locking at N frequencies, which can be of significantly different energies and pulse widths. The model provides a framework for understanding the operation and stability of identically mode-locked pulses at multiple frequencies, thus contributing to the characterization of the increasingly important and timely technology of dual- and multifrequency mode-locked laser cavities.

© 2008 Optical Society of America

OCIS Codes
(060.4230) Fiber optics and optical communications : Multiplexing
(140.4050) Lasers and laser optics : Mode-locked lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: August 20, 2007
Revised Manuscript: February 12, 2008
Manuscript Accepted: March 18, 2008
Published: May 22, 2008

Citation
Edward D. Farnum and J. Nathan Kutz, "Multifrequency mode-locked lasers," J. Opt. Soc. Am. B 25, 1002-1010 (2008)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-25-6-1002


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley-Interscience, 2002). [CrossRef]
  2. Y. Shiquan, L. Zhaohui, Y. Shuzhong, D. Xiaoyyi, K. Guiyun, and Z. Qida, “Dual-wavelength actively mode-locked erbium dobed fiber laser using FBGs,” Proc. SPIE 4974, 43-49 (2003). [CrossRef]
  3. H. Dong, G. Zhu, Q. Wang, and N. K. Dutta, “Simultaneous mode locked operation of a fiber laser at two wavelengths,” Proc. SPIE 5349, 117-121 (2004). [CrossRef]
  4. Z. Ahned and N. Onodera, “High repetition rate optical pulse generation by frequency multiplication in actively mode-locked fiber ring lasers,” Electron. Lett. 32, 455-455 (1996). [CrossRef]
  5. C. Wu and N. K. Dutta, “High repetition-rate optical pulse generation using a rational harmonic mode-locked fiber laser,” IEEE J. Quantum Electron. 36, 145-150 (2000). [CrossRef]
  6. Z. Li, C. Lou, Y. Gao, and K. T. Chan, “A dual-wavelength and dual-repetition-rate actively mode-locked fiber ring laser,” Opt. Commun. 185, 381-385 (2000). [CrossRef]
  7. E. Farnum, L. Butson, and J. N. Kutz, “Theory and simulation of dual-frequency mode-locked lasers,” J. Opt. Soc. Am. B 23, 257-264 (2006). [CrossRef]
  8. H. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1173-1185 (2000). [CrossRef]
  9. J. N. Kutz, “Mode-locked soliton lasers,” SIAM Rev. 48, 629-678 (2006). [CrossRef]
  10. D. J. Richardson, R. I. Laming, D. N. Payne, V. J. Matsas, and M. W. Phillips, “Self-starting, passively modelocked erbium fiber laser based on the amplifying Sagnac switch,” Electron. Lett. 27, 542-544 (1991). [CrossRef]
  11. M. L. Dennis and I. N. Duling III, “High repetition rate figure eight laser with extracavity feedback,” Electron. Lett. 28, 1894-1896 (1992). [CrossRef]
  12. F. X. Kartner and U. Keller, “Stabilization of solitonlike pulses with a slow saturable absorber,” Opt. Lett. 20, 16-18 (1995). [CrossRef] [PubMed]
  13. J. N. Kutz, B. C. Collings, K. Bergman, S. Tsuda, S. Cundiff, W. H. Knox, P. Holmes, and M. Weinstein, “Mode-locking pulse dynamics in a fiber laser with a saturable Bragg reflector,” J. Opt. Soc. Am. B 14, 2681-2690 (1997). [CrossRef]
  14. K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse modelocked erbium fiber ring laser,” Electron. Lett. 28, 2226-2228 (1992). [CrossRef]
  15. H. A. Haus, E. P. Ippen, and K. Tamura, “Additive-pulse modelocking in fiber lasers,” IEEE J. Quantum Electron. 30, 200-208 (1994). [CrossRef]
  16. M. E. Fermann, M. J. Andrejco, Y. Silverberg, and M. L. Stock, “Passive modelocking by using nonlinear polarization evolution in a polarizing-maintaining erbium-doped fiber laser,” Opt. Lett. 29, 447-449 (1993).
  17. F. X. Kärtner, D. Kopf, and U. Keller, “Solitary pulse stabilization and shortening in actively mode-locked lasers,” J. Opt. Soc. Am. B 12, 486-496 (1995). [CrossRef]
  18. H. A. Haus, “A theory of forced mode locking,” IEEE J. Quantum Electron. 11, 323-330 (1975). [CrossRef]
  19. G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley-Interscience, 2002). [CrossRef]
  20. T. Kapitula, J. N. Kutz, and B. Sandstede, “Stability of pulses in the master-modelocking equation,” J. Opt. Soc. Am. B 19, 740-746 (2002). [CrossRef]
  21. L. F. Mollenauer, S. G. Evangelides, and J. P. Gordon, “Wavelength division multiplexing with solitons in ultra-long distance transmission using lumped amplifiers,” J. Lightwave Technol. 9, 362-367 (1991) (see appendix). [CrossRef]
  22. A. Hasegawa and Y. Kodama, Solitons in Optical Communications (Oxford U. Press, 1995), Chap. 10.
  23. P. G. Drazin, Nonlinear Systems (Cambridge U. Press, 1992).
  24. T. Kapitula and B. Sandstede, “Instability mechanism for bright solitary-wave solutions to the cubic-quintic Ginzburg-Landau equation,” J. Opt. Soc. Am. B 15, 2757-2762 (1998). [CrossRef]
  25. T. Kapitula and B. Sandstede, “Stability of bright solitary-wave solutions to perturbed nonlinear Schrödinger equations,” Physica D 124, 58-103 (1998). [CrossRef]
  26. R. L. Burden and J. D. Faires, Numerical Analysis, 8th ed. (Brooks-Cole, 2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited