OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 6 — Jun. 1, 2008
  • pp: 1051–1058

Atomic quantum motion and single-mode waveguiding in a hollow metallic waveguide

Zhengling Wang and Jianping Yin  »View Author Affiliations


JOSA B, Vol. 25, Issue 6, pp. 1051-1058 (2008)
http://dx.doi.org/10.1364/JOSAB.25.001051


View Full Text Article

Enhanced HTML    Acrobat PDF (380 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a novel scheme to realize atomic quantum motion, single-mode waveguiding, and coherence propagation by using a blue-detuned TE 01 doughnut mode in a hollow metallic waveguide (HMW). In this scheme, ultracold atoms can not only be guided in the dark region of the TE 01 mode in the HMW (which will suffer the minimal light shift and the lowest spontaneous emission loss), but also retain some advantages of dark hollow beam atomic guiding (which has a larger hollow radius and a higher vacuum). Our study shows that if the incident angle of the ultracold atoms of Bose–Einstein condensation (BEC) is very small and the deviation of the trapping frequency of the BEC from one of the HMWs is very small, the ultracold atoms may remain in the initial coherent state in the course of atomic coupling from the BEC to the HMW. The ground mode of the matter wave and the degree of first- (or second-) order coherence of guided ultracold atoms can be unchanged during propagation in the straight HMW and almost unchanged for several 10-cm propagation distances with a curvature radius 1.5 m in the curved HMW.

© 2008 Optical Society of America

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(020.6580) Atomic and molecular physics : Stark effect
(140.7010) Lasers and laser optics : Laser trapping
(220.4880) Optical design and fabrication : Optomechanics

ToC Category:
Atomic and Molecular Physics

History
Original Manuscript: January 10, 2008
Revised Manuscript: April 5, 2008
Manuscript Accepted: April 7, 2008
Published: May 28, 2008

Citation
Zhengling Wang and Jianping Yin, "Atomic quantum motion and single-mode waveguiding in a hollow metallic waveguide," J. Opt. Soc. Am. B 25, 1051-1058 (2008)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-25-6-1051


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose-Einstein condensate in a dilute atomic vapor,” Science 269, 198-201 (1995). [CrossRef] [PubMed]
  2. M. D. Barrett, J. A. Sauer, and M. S. Chapman, “All-optical formation of an atomic Bose-Einstein Condensate,” Phys. Rev. Lett. 87, 010404 (2001). [CrossRef] [PubMed]
  3. T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713-4716 (1997). [CrossRef]
  4. E. W. Hagley, L. Deng, M. Kozuma, M. Trippenbach, Y. B. Band, M. Edwards, M. Doery, P. S. Julienne, K. Helmerson, S. L. Rolston, and W. D. Phillips, “Measurement of the coherence of a Bose-Einstein condensate,” Phys. Rev. Lett. 83, 3112-3115 (1999). [CrossRef]
  5. S. Franke-Arnold, G. Huyet, and S. M. Barnett, “Measuresof coherence for trapped matter waves,” J. Phys. B 34, 945-964 (2001). [CrossRef]
  6. M. R. Andrews, C. G. Townsend, H. J. Miesner, D. S. Durfee, D. M. Kurn, and W. Ketterle, “Observation of interference between two Bose condensates,” Science 275, 637-641 (1997). [CrossRef] [PubMed]
  7. W. Ketterle and H. J. Miesner, “Coherence properties of Bose-Einstein condensates and atom lasers,” Phys. Rev. A 56, 3291-3293 (1997). [CrossRef]
  8. E. A. Burt, R. W. Ghrist, C. J. Myatt, M. J. Holland, E. A. Cornell, and C. E. Wieman, “Coherence, correlations, and collisions: What one learns about Bose-Einstein condensates from their decay,” Phys. Rev. Lett. 79, 337-340 (1997). [CrossRef]
  9. M. A. Ol'Shanii, Yu. B. Ovchinnikov, and V. S. Letkhov, “Laser guiding of atoms in a hollow optical fiber,” Opt. Commun. 98, 77-79 (1993). [CrossRef]
  10. S. Marksteiner, C. M. Savage, P. Zoller, and S. L. Rolston, “Coherent atomic waveguides from hollow optical fibers: Quantized atomic motion,” Phys. Rev. A 50, 2680-2690 (1994). [CrossRef] [PubMed]
  11. M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75, 3253-3256 (1995). [CrossRef] [PubMed]
  12. H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76, 4500-4503 (1996). [CrossRef] [PubMed]
  13. M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, “Evanescent-wave guiding of atoms in hollow optical fibers,” Phys. Rev. A 53, R648-R651 (1996). [CrossRef] [PubMed]
  14. M. J. Renn, A. A. Zozulya, E. A. Donley, E. A. Cornell, and D. Z. Anderson, “Optical-dipole-force fiber guiding and heating of atoms,” Phys. Rev. A 55, 3684-3693 (1997). [CrossRef]
  15. H. Ito, K. Sakaki, W. Jhe, and M. Ohtsu, “Evanescent-light induced atom-guidance using a hollow optical fiber with light coupled sideways,” Opt. Commun. 141, 43-47 (1997). [CrossRef]
  16. H. R. Noh and W. Jhe, “Atom optics with hollow optical systems,” Phys. Rep. 372, 269-317 (2002). [CrossRef]
  17. E. A. Hinds and C. Eberlein, “Quantum propagation of neutral atoms in a magnetic quadrupole,” Phys. Rev. A 61, 033614 (2000). [CrossRef]
  18. T. J. Davis, “Atomic de Broglie waveguides and integrated atom-optics using permanent magnets,” J. Opt. B 1, 408-414 (1999). [CrossRef]
  19. X. Liu, D. Li, H. Huang, S. Li, and Y. Wang, “Atom coherence propagation in a magnetic atomic waveguide,” J. Opt. B 3, 171-177 (2001). [CrossRef]
  20. S. Gupta, K. W. Murch, K. L. Moore, T. P. Purdy, and D. M. Stamper-Kurn, “Bose-Einstein condensation in a circular waveguide,” Phys. Rev. Lett. 95, 143201 (2005). [CrossRef] [PubMed]
  21. Z. Wang, M. Dai, and J. Yin, “Atomic (or molecular) guiding using a blue-detuned doughnut mode in a hollow metallic waveguide,” Opt. Express 13, 8406-8423 (2005). [CrossRef] [PubMed]
  22. Y. Xia and J. Yin, “Generation of a focused hollow beam by an 2pi-phase plates and its applications in atom or molecule optics,” J. Opt. Soc. Am. B 22, 529-536 (2005). [CrossRef]
  23. J. Yin, “Realization and research of optically-trapped quantum degenerate gases,” Phys. Rep. 430, 1-116 (2006). [CrossRef]
  24. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transition and lasers,” Bell Syst. Tech. J. 43, 1783-1809 (1964).
  25. E. Garmire, T. McMahon, and M. Bass, “Propagation of infrared light inflexible hollow waveguide,” Appl. Opt. 15, 145-150 (1976). [CrossRef] [PubMed]
  26. R. L. Abrams and A. N. Chester, “Resonator theory for hollow waveguide lasers,” Appl. Opt. 13, 2117-2125 (1974). [CrossRef] [PubMed]
  27. M. Saito, S. Sato, and M. Miyagi, “Loss characteristics of infrared hollow waveguides in multimode transmission,” J. Opt. Soc. Am. A 10, 277-282 (1993). [CrossRef]
  28. X. Xu, V. G. Minogin, K. Lee, Y. Wang, and W. Jhe, “Guiding cold atoms in a hollow laser beam,” Phys. Rev. A 60, 4796-4804 (1999). [CrossRef]
  29. H. Nha, and W. Jhe, “Sisphus cooling on the surface of a hollow-mirror atom trap,” Phys. Rev. A 56, 729-736 (1997). [CrossRef]
  30. M. Naraschewski and R. J. Glauber, “Spatial coherence and density correlations of trapped Bose gases,” Phys. Rev. A 59, 4595-4607 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited