OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 6 — Jun. 1, 2008
  • pp: 1081–1086

New time-dependent photorefractive three-dimensional model: application to self-trapped beam with large bending

Fabrice Devaux, Virginie Coda, Mathieu Chauvet, and Rémy Passier  »View Author Affiliations

JOSA B, Vol. 25, Issue 6, pp. 1081-1086 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (504 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a powerful method to numerically solve the propagation of light in a photorefractive medium in the presence of both applied field and photogalvanic nonlinearity. This time-dependent full three-dimensional model is successfully applied to explain large self-bending of a solitonlike beam observed in biased undoped lithium niobate crystals. It reveals that charge saturation is at the origin of beam bending. The numerical results give deep insight of the formation dynamics in agreement with experiments and depict the trajectory of the induced waveguide inside the crystal.

© 2008 Optical Society of America

OCIS Codes
(190.5330) Nonlinear optics : Photorefractive optics
(190.6135) Nonlinear optics : Spatial solitons

ToC Category:
Nonlinear Optics

Original Manuscript: January 30, 2008
Manuscript Accepted: February 29, 2008
Published: May 29, 2008

Fabrice Devaux, Virginie Coda, Mathieu Chauvet, and Rémy Passier, "New time-dependent photorefractive three-dimensional model: application to self-trapped beam with large bending," J. Opt. Soc. Am. B 25, 1081-1086 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. P. Huignard and A. Marrakchi, “Coherent signal beam amplification in two-wave mixing experiments with photorefractive Bi12SiO20 crystals,” Opt. Commun. 38, 249-254 (1981). [CrossRef]
  2. P. Günter, “Holography, coherent light amplification and optical phase conjugation with photorefractive materials,” Phys. Rep. 93, 199-299 (1982). [CrossRef]
  3. J. Feinberg, “Asymmetric self-defocusing of an optical beam from the photorefractive effect,” J. Opt. Soc. Am. 72, 46-51 (1982). [CrossRef]
  4. G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533-536 (1993). [CrossRef] [PubMed]
  5. E. Del Re, B. Crosignani, and P. Di Porto, “Photorefractive Solitons,” in Spatial solitons, S.Trillo and W.Torruellas, eds. (Springer, 2001), pp. 61-85.
  6. M. F. Shih and M. Segev, “Three-dimensional spiraling of interacting spatial solitons,” Phys. Rev. Lett. 78, 2551-2554 (1997). [CrossRef]
  7. M. Petrović, D. Träger, A. Strinić, M. Belić, J. Schröder, and C. Denz, “Solitonic lattices in photorefractive crystals,” Phys. Rev. E 68, 055601 (2003). [CrossRef]
  8. M. Petrović, D. Jović, M. Belić, J. Schröder, P. Jander, and C. Denz, “Two dimensional counterpropagating spatial solitons in photorefractive crystals,” Phys. Rev. Lett. 95, 053901 (2005). [CrossRef] [PubMed]
  9. G. M. Segev, G. C. Valley, B. Crosignani, P. Di Porto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211-3214 (1994). [CrossRef] [PubMed]
  10. N. Fressengeas, J. Maufoy, and G. Kugel, “Temporal behavior of bidimensional photorefractive bright spatial solitons,” Phys. Rev. E 54, 6866-6875 (1996). [CrossRef]
  11. P. A. Marquez Aguilar, J. J. Sanchez Mondragon, S. Stepanov, and V. Vysloukh, “Transient self-bending of laser beams in photorefractive crystals with drift nonlinearity,” Phys. Rev. A 54, R2563-R2566 (1996). [CrossRef] [PubMed]
  12. A. A. Zozulya and D. Anderson, “Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field,” Phys. Rev. A 51, 1520-1531 (1995). [CrossRef] [PubMed]
  13. B. Crosignani, P. Di Porto, A. Degasperis, M. Segev, and S. Trillo, “Three-dimensional optical beam propagation and solitons in photorefractive crystals,” J. Opt. Soc. Am. B 14, 3078-3090 (1997). [CrossRef]
  14. C. Denz, W. Krlikowski, J. Petter, C. Weilnau, T. Tschudi, M. R. Belić, F. Kaiser, and A. Stepken, “Dynamics of formation and interaction of photorefractive screening solitons,” Phys. Rev. E 60, 6222-6225 (1999). [CrossRef]
  15. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, 1993).
  16. M. Chauvet, V. Coda, H. Maillotte, E. Fazio, and G. Salamo, “Large self-deflection of soliton beams in LiNbO3,” Opt. Lett. 30, 1977-1979 (2005). [CrossRef] [PubMed]
  17. E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193-2195 (2004). [CrossRef]
  18. M. Simon, S. Wevering, K. Buse, and E. Krätzig, “The bulk photovoltaic effect of photorefractive LiNbO3:Fe crystals at high light intensities,” J. Phys. D: Appl. Phys. 1, 144-149 (1997). [CrossRef]
  19. W. Yan, Y. Kong, L. Shi, L. Sun, H. Liu, X. N. Li, D. Zhao, J. Xu, S. Chen, L. Zhang, Z. Huang, S. Liu, and G. Zhang, “Influence of composition on the photorefractive centers in pure LiNbO3 at low light intensity,” Appl. Opt. 45, 2453-2458 (2006). [CrossRef] [PubMed]
  20. S. R. Singh and D. N. Christodoulides, “Evolution of spatial optical solitons in biased photorefractive media under steady state conditions,” Opt. Commun. 118, 569-576 (1995). [CrossRef]
  21. M. Segev, M. Shih, and G. C. Valley, “Photorefractive screening solitons of high and low intensity,” J. Opt. Soc. Am. B 13, 706-718 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited