OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 6 — Jun. 1, 2008
  • pp: 915–922

Propagation of spatial correlation vortices

I. D. Maleev and G. A. Swartzlander, Jr.  »View Author Affiliations


JOSA B, Vol. 25, Issue 6, pp. 915-922 (2008)
http://dx.doi.org/10.1364/JOSAB.25.000915


View Full Text Article

Enhanced HTML    Acrobat PDF (671 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The propagating four-dimensional mutual coherence function of a partially coherent Gaussian beam containing an arbitrarily positioned optical vortex is analytically determined. The dark intensity core becomes diffuse under low coherence and the vortex is only detectable by examining the cross-correlation function. This function contains a vortex dipole or a ring dislocation depending on the vortex position in the beam. The position of these robust propagating correlation phase singularities is described.

© 2008 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(030.1670) Coherence and statistical optics : Coherent optical effects
(100.4550) Image processing : Correlators
(260.0260) Physical optics : Physical optics
(350.5030) Other areas of optics : Phase

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: February 29, 2008
Manuscript Accepted: March 17, 2008
Published: May 14, 2008

Citation
I. D. Maleev and G. A. Swartzlander, Jr., "Propagation of spatial correlation vortices," J. Opt. Soc. Am. B 25, 915-922 (2008)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-25-6-915


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. London, Ser. A 336, 165-190 (1974). [CrossRef]
  2. M.Vasnetsov and K.Staliunas, eds., Optical Vortices. Horizons in World Physics, Vol. 228 (Nova Science, 1999).
  3. C. T. Law and G. A. Swartzlander, Jr., “Optical vortex solitons and the stability of dark soliton stripes,” Opt. Lett. 18, 586-588 (1993). [CrossRef] [PubMed]
  4. D. Rozas, C. T. Law, and G. A. Swartzlander, Jr., “Propagation dynamics of optical vortices,” J. Opt. Soc. Am. B 14, 3054-3065 (1997). [CrossRef]
  5. L. Allen, M. W. Beijersbergen, R., J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185-8189 (1992). [CrossRef] [PubMed]
  6. L. Allen, S. M. Barnett, and M. J. Padgett, Optical Angular Momentum (Institute of Physics, 2003). [CrossRef]
  7. F. Gori, G. Guattari, and C. Padovani, “Modal expansion for J0-correlated Schell-model sources,” Opt. Commun. 64, 311-316 (1987). [CrossRef]
  8. F. T. Arecchi, G. Giacomelli, P. L. Ramazza, and S. Residori, “Vortices and defect statistics in two-dimensional optical chaos,” Phys. Rev. Lett. 67, 3749-3752 (1991). [CrossRef] [PubMed]
  9. F. Gori, M. Santarsiero, R. Borghi, and S. Vicalvi, “Partially coherent sources with helicoidal modes,” J. Mod. Opt. 45, 539-554 (1998). [CrossRef]
  10. S. R. Seshadri, “Average characteristics of a partially coherent Bessel-Gauss optical beam,” J. Opt. Soc. Am. A 16, 2917-2927 (1999). [CrossRef]
  11. S. A. Ponomarenko, “A class of partially coherent beams carrying optical vortices,” J. Opt. Soc. Am. A 18, 150-156 (2001). [CrossRef]
  12. G. A. Swartzlander, Jr., “Peering into darkness with a vortex spatial filter,” Opt. Lett. 26, 497-499 (2001). [CrossRef]
  13. G. S. Agarwal and J. Banergi, “Spatial coherence and information entropy in optical vortex fields,” Opt. Lett. 27, 800-802 (2002). [CrossRef]
  14. Z. Bouchal and J. Perina, “Non-diffracting beams with controlled spatial coherence,” J. Mod. Opt. 49, 1673-1689 (2002). [CrossRef]
  15. D. M. Palacios, D. Rozas, and G. A. Swartzlander, Jr., “Observed scattering into a dark optical vortex core,” Phys. Rev. Lett. 88, 103902 (2002). [CrossRef] [PubMed]
  16. G. V. Bogatyryova, C. F. Fel'de, P. V. Polyanskii, S. A. Ponomarenko, M. S. Soskin, and E. Wolf, “Partially coherent vortex beams with a separable phase,” Opt. Lett. 28, 878-880 (2003). [CrossRef] [PubMed]
  17. G. Gbur and T. Visser, “Coherence vortices in partially coherent beams,” Opt. Commun. 222, 117-125 (2003). [CrossRef]
  18. C.-C. Jeng, M.-F. Shih, K. Motzek, and Y. Kivshar, “Partially incoherent optical vortices in self-focusing nonlinear media,” Phys. Rev. Lett. 92, 043904 (2004). [CrossRef] [PubMed]
  19. I. D. Maleev, D. M. Palacios, A. S. Marathay, and G. A. Swartzlander, Jr., “Spatial correlation vortices: theory,” J. Opt. Soc. Am. B 21, 1895-1900 (2004). [CrossRef]
  20. D. M. Palacios, I. D. Maleev, A. S. Marathay, and G. A. Swartzlander, Jr., “Spatial correlation singularity of a vortex field,” Phys. Rev. Lett. 92, 143905 (2004). [CrossRef] [PubMed]
  21. G. A. Swartzlander, Jr. and J. Schmit, “Temporal correlation vortices and topological dispersion,” Phys. Rev. Lett. 93, 093901 (2004). [CrossRef] [PubMed]
  22. G. A. Swartzlander, Jr. and R. Hernandez, “Optical Rankine vortex and anomalous circulation of light,” Phys. Rev. Lett. 99, 163901 (2007). [CrossRef] [PubMed]
  23. G. Foo, D. M. Palacios, and G. A. Swartzlander, Jr., “Optical vortex coronagraph,” Opt. Lett. 30, 3308-3310 (2005). [CrossRef]
  24. J. H. Lee, G. Foo, E. G. Johnson, and G. A. Swartzlander, Jr., “Experimental verification of an optical vortex coronagraph,” Phys. Rev. Lett. 97, 053901 (2006). [CrossRef] [PubMed]
  25. S. N. Khonina, V. V. Kotlyar, M. V. Shinkarev, V. A. Soifer, and G. V. Uspleniev, “The phase rotor filter,” J. Mod. Opt. 39, 1147-1154 (1992). [CrossRef]
  26. C. Schwartz and A. Dogariu, “Enhanced backscattering of optical vortex fields,” Opt. Lett. 30, 1431-1433 (2005). [CrossRef] [PubMed]
  27. C. K. Hitzenberger, M. Danner, W. Drexler, and A. F. Fercher, “Measurement of the spatial coherence of superluminescent diodes,” J. Mod. Opt. 46, 1763-1774 (1999).
  28. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography--principles and applications,” Rep. Prog. Phys. 66, 239-303 (2003). [CrossRef]
  29. V. L. Ginzburg and L. P. Pitaevskii, “On the theory of superfluidity,” Sov. Phys. JETP 7, 858-861 (1958).
  30. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).
  31. N. B. Baranova, B. Y. Zel'dovich, A. V. Mamaev, N. F. Pilipetski, and V. V. Shkunov, “Speckle-inhomogeneous field wavefront dislocations,” Pis'ma Zh. Eksp. Teor. Fiz. 33, 206-210 (1981).
  32. R. Y. Chiao, I. H. Deutsch, J. C. Garrison, and E. M. Wright, “Solitons in quantum nonlinear optics,” in Frontiers in Nonlinear Optics: The Serge Akhmanov Memorial Volume, H.Walther, ed. (Hilger, 1992), pp. 151-182.
  33. J. P. Martikainen and H. T. C. Stoof, “Quantum fluctuations of a vortex in an optical lattice,” Phys. Rev. Lett. 91, 240403 (2003). [CrossRef] [PubMed]
  34. P. Coullet, L. Gill, and F. Rocca, “Optical vortices,” Opt. Commun. 73, 403-408 (1989). [CrossRef]
  35. E. Wolf, “A macroscopic theory of interference and diffraction of light from finite sources, I: Fields with a narrow spectral range,” Proc. R. Soc. London A225, 96-111 (1954).
  36. E. Wolf, “A macroscopic theory of interference and diffraction of light from finite sources, II: Fields with a spectral range of arbitrary width,” Proc. R. Soc. London A230, 246-265 (1955).
  37. H. Schouten, G. Gbur, T. Visser, and E. Wolf, “Phase singularities of the coherence functions in Young's interference pattern,” Opt. Lett. 28, 968-970 (2003). [CrossRef] [PubMed]
  38. A. C. Schell, “The multiple plate antenna,” Doctoral dissertation (Massachusetts Institute of Technology, 1961), (unpublished), Sec. 7.5.
  39. A. C. Schell, “Technique for the determination of the radiation pattern of a partially coherent aperture,” IEEE Trans. Antennas Propag. AP-15, 187-188 (1967). [CrossRef]
  40. Y. Li and E. Wolf, “Radiation from anisotropic Gaussian Schell-model sources,” Opt. Lett. 7, 256-258 (1982). [CrossRef] [PubMed]
  41. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995).
  42. I. D. Maleev, D. M. Palacios, A. S. Marathay, and G. A. Swartzlander, Jr., “Spatial correlation vortices in partially coherent light: theory,” J. Opt. Soc. Am. B 21, 1895-1900 (2004). [CrossRef]
  43. I. D. Maleev and G. A. Swartzlander, Jr., “Composite optical vortices,” J. Opt. Soc. Am. B 20, 1169-1176 (2003). [CrossRef]
  44. W. H. Carter and E. Wolf, “Correlation theory of wavefields generated by fluctuating, three-dimensional, primary, scalar sources. I. General theory,” Opt. Acta 28, 227-244 (1981). [CrossRef]
  45. W. H. Carter and E. Wolf, “Correlation theory of wavefields generated by fluctuating, three-dimensional, primary, scalar sources. II. Radiation from isotropic model sources,” Opt. Acta 28, 245-259 (1981). [CrossRef]
  46. E. Wolf and W. H. Carter, “Coherence and radiant intensity in scalar wave fields generated by fluctuating primary planar sources,” J. Opt. Soc. Am. 68, 953-964 (1978). [CrossRef]
  47. Z. S. Sacks, D. Rozas, and G. A. Swartzlander, Jr., “Holographic formation of optical-vortex filaments,” J. Opt. Soc. Am. B 15, 2226-2234 (1998). [CrossRef]
  48. M. V. Berry, “Singularities in waves and rays,” in Physics of Defects, Les Houches Sessions XXXV, R.Balian, M.Kleman, and J.-P.Poirier, eds. ( North Holland, 1981).
  49. I. D. Maleev, D. M. Palacios, A. S. Marathay, and G. A. Swartzlander, Jr., “Spatial correlation vortices: detection,” (personal communication, 2005).
  50. A. V. Volyar, V. G. Shvedov, T. A. Fadeeva, and E. A. Konshu, “Nonparaxial Gaussian beams: 3. Optical vortices,” Tech. Phys. Lett. 27, 525-528 (2001). [CrossRef]
  51. A. Marathay, Elements of Optical Coherence Theory (Wiley, 1982).
  52. Wavelength of a partially coherent vortex field may be different from the wavelength of a Gaussian beam, used to form a vortex. Resulting spectral effects in the partially coherent vortex fields is a fascinating subject, however, it is beyond the scope of this paper.
  53. A. T. Friberg and R. J. Sudol, “Propagation parameters of Gaussian-Schell model beams,” Opt. Commun. 41, 383-387 (1982). [CrossRef]
  54. A. T. Friberg and R. J. Sudol, “The spatial coherence properties of Gaussian Schell-model beams,” Opt. Acta 30, 1075-1097 (1983). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited