OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 6 — Jun. 1, 2008
  • pp: 961–971

Local field calculations of the anisotropic nonlinear absorption coefficient of aligned gold nanorods embedded in silica

Jean-Michel Lamarre, Franck Billard, and Ludvik Martinu  »View Author Affiliations

JOSA B, Vol. 25, Issue 6, pp. 961-971 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (737 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The anisotropic nonlinear third-order susceptibility of nanocomposites consisting of aligned ellipsoidal metallic nanoparticles embedded in a dielectric matrix is modeled from the generalized Maxwell-Garnett equation involving depolarization factors. Depolarization factors take into account different anisotropic particle geometries such as flat disks, rods, or ellipsoids. The equations traditionally used to model third-order susceptibility of nanocomposites are valid only for very low metal volume fractions. Modified equations that allow metal volume fractions up to the limit of validity of the Maxwell-Garnett equation are used. The effect of the different model parameters, namely, the metal volume fraction, the real and imaginary parts of the metal dielectric constant, the matrix dielectric constant, and, finally, the ratio of the real and imaginary parts of the metal third-order susceptibility were investigated using the model gold/silica nanocomposite system. As previously reported in the literature for the isotropic particle case, counterintuitive effects such as sign reversal between the bulk metal and composite nonlinear susceptibilities have been observed. The calculations were applied to the case of gold nanorods embedded in silica that were experimentally found to exhibit anisotropic saturable absorption.

© 2008 Optical Society of America

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(160.4330) Materials : Nonlinear optical materials
(190.4400) Nonlinear optics : Nonlinear optics, materials
(160.4236) Materials : Nanomaterials

ToC Category:

Original Manuscript: January 3, 2008
Revised Manuscript: March 19, 2008
Manuscript Accepted: March 25, 2008
Published: May 21, 2008

Jean-Michel Lamarre, Franck Billard, and Ludvik Martinu, "Local field calculations of the anisotropic nonlinear absorption coefficient of aligned gold nanorods embedded in silica," J. Opt. Soc. Am. B 25, 961-971 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Ricard, P. Roussignol, and C. Flytzanis, “Surface-mediated enhancement of optical phase conjugation in metal colloids,” Opt. Lett. 10, 511-513 (1985). [CrossRef] [PubMed]
  2. S. Debrus, J. Lafait, M. May, N. Pinçon, D. Prot, C. Sella, and J. Venturini, “Z-scan determination of the third-order optical nonlinearity of gold: silica nanocomposites,” J. Appl. Phys. 88, 4469-4475 (2000). [CrossRef]
  3. N. Pinçon, B. Palpant, D. Prot, E. Charron, and S. Debrus, “Third-order nonlinear optical responses of Au:SiO2 thin films: influence of gold nanoparticle concentration and morphologic parameters,” Eur. Phys. J. D 19, 395-402 (2002). [CrossRef]
  4. H. B. Liao, W. Lu, W. Wen, and G. K. L. Wong, “Optical characteristics of gold nanoparticles-doped multilayer thin film,” J. Opt. Soc. Am. B 22, 1923-1926 (2005). [CrossRef]
  5. H. B. Liao, W. Wen, and G. K. L. Wong, “Preparation and optical characterization of Au/SiO2 composite films with multilayer structure,” J. Appl. Phys. 93, 4485-4488 (2003). [CrossRef]
  6. H. B. Liao, R. F. Xiao, H. Wang, K. S. Wong, and G. K. L. Wong, “Large third-order optical nonlinearity in Au:TiO2 composite films measured on a femtosecond time scale,” Appl. Phys. Lett. 72, 1817-1819 (1998). [CrossRef]
  7. I. Tanahashi, Y. Manabe, T. Tohda, S. Sasaki, and A. Nakamura, “Optical nonlinearities of Au/SiO2 composite thin films prepared by a sputtering method,” J. Appl. Phys. 79, 1244-1249 (1996). [CrossRef]
  8. D. J. Chen, S. Ding, J. B. Han, H. J. Zhou, S. Xiao, G. G. Xiong, and Q. Q. Wang, “A sign alternation of nonlinear absorption in gold composite films in Z-scan,” Chin. Phys. Lett. 22, 2286-2289 (2005). [CrossRef]
  9. M. Kyoung and M. Lee, “Z-scan studies on the third-order optical nonlinearity of Au nanoparticles embedded in TiO2,” Bull. Korean Chem. Soc. 21, 26-28 (2000).
  10. K. Fukumi, A. Chayahara, K. Kadono, T. Sakaguchi, Y. Horino, M. Miya, K. Fujii, K. Hayakawa, and M. Satou, “Gold nanoparticles ion implanted in glass with enhanced nonlinear optical properties,” J. Appl. Phys. 75, 3075-3080 (1994). [CrossRef]
  11. E. Cattaruzza, G. Battaglin, P. Calvelli, F. Gonella, G. Mattei, C. Maurizio, P. Mazzoldi, S. Padovani, R. Polloni, C. Sada, B. Scremin, and F. D'Acapito, “Fast nonlinear refractive index of pure and alloy metallic nanoclusters in silica glass,” Compos. Sci. Technol. 63, 1203-1208 (2003). [CrossRef]
  12. S. Qu, C. Du, Y. Song, Y. Wang, Y. Gao, S. Liu, Y. Li, and D. Zhu, “Optical nonlinearities and optical limiting properties in gold nanoparticles protected by ligands,” Chem. Phys. Lett. 356, 403-408 (2002). [CrossRef]
  13. S. Qu, Y. Zhang, H. Li, J. Qiu, and C. Zhu, “Nanosecond nonlinear absorption in Au and Ag nanoparticles precipitated glasses induced by a femtosecond laser,” Opt. Mater. 28, 259-265 (2006). [CrossRef]
  14. S. Qu, C. Zhao, X. Jiang, G. Fang, Y. Gao, H. Zeng, Y. Song, J. Qui, C. Zhu, and K. Hirao, “Optical nonlinearities of space selectively precipated Au nanoparticles inside glasses,” Chem. Phys. Lett. 368, 352-358 (2003). [CrossRef]
  15. H. Shen, B. Cheng, G. Lu, W. Wang, D. Guan, Z. Chen, and G. Yang, “Nonlinear optical properties of Au/PVP composite thin films,” Chin. Phys. 14, 1915-1918 (2005). [CrossRef]
  16. J. C. Maxwell-Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London, Ser. A 203, 385-420 (1904). [CrossRef]
  17. J. C. Maxwell-Garnett, 'Colours in metal glasses, in metallic films, and in metallic solutions. II,” Philos. Trans. R. Soc. London, Ser. A 205, 237-288 (1906). [CrossRef]
  18. X. C. Jiang, A. Brioude, and M. P. Pileni, “Gold nanorods: limitation on their synthesis and optical properties,” Colloids Surf. A 277, 201-206 (2006). [CrossRef]
  19. M. Pelton, M. Liu, S. Park, N. F. Scherer, and P. Guyot-Sionnest, “Ultrafast resonant optical scattering from single gold nanorods: large nonlinearities and plasmon saturation,” Phys. Rev. B 73, 155419 (2006). [CrossRef]
  20. H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable absorption and reverse saturable absorption at longitudinal plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88, 083107 (2006). [CrossRef]
  21. M. Kyoung and M. Lee, “Nonlinear absorption and refractive index measurements of silver nanorods by the Z-scan technique,” Opt. Commun. 171, 145-148 (1999). [CrossRef]
  22. S. Roorda, T. V. Dillen, A. Polman, C. Graf, A. van Blaaderen, and B. J. Kooi, “Aligned gold nanorods in silica made by ion irradiation of core-shell colloidal particles,” Adv. Mater. (Weinheim, Ger.) 16, 235-237 (2004). [CrossRef]
  23. J.-M. Lamarre, Z. Yu, C. Harkati, S. Roorda, and L. Martinu, “Optical and microstructural properties of nanocomposite Au/SiO2 films containing particles deformed by heavy ion irradiation,” Thin Solid Films 479, 232-237 (2005). [CrossRef]
  24. C. Harkati Kerboua, J.-M. Lamarre, L. Martinu, and S. Roorda, “Deformation, alignment and anisotropic optical properties of gold nanoparticles embedded in silica,” Nucl. Instrum. Methods Phys. Res. B 257, 42-46 (2007). [CrossRef]
  25. R. Atkinson, W. R. Hendren, G. A. Wurtz, W. Dickson, A. V. Zayats, P. Evans, and R. J. Pollard, “Anisotropic properties of arrays of gold nanorods embedded in alumina,” Phys. Rev. B 73, 235402 (2006). [CrossRef]
  26. J.-M. Lamarre and L. Martinu, in Proceedings of the 47th Annual Technical Conference of the Society of Vacuum Coaters, (SVC, 2004), p. 343.
  27. J. M. Lamarre, F. Billard, C. H. Kerboua, M. Lequime, S. Roorda, and L. Martinu, “Anisotropic nonlinear optical absorption of gold nanorods in a silica matrix,” Opt. Commun. 281, 331-340 (2008). [CrossRef]
  28. J. W. Haus, R. Inguva, and C. M. Bowden, “Effective-medium theory of nonlinear ellipsoidal composites,” Phys. Rev. A 40, 5729-5734 (1989). [CrossRef] [PubMed]
  29. R. W. Cohen, G. D. Cody, M. D. Coutts, and B. Abeles, “Optical properties of granular silver and gold films,” Phys. Rev. B 8, 3689-3701 (1973). [CrossRef]
  30. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).
  31. S. Giordano, “Effective medium theory for dispersions of dielectric ellipsoids,” J. Electrost. 58, 59-76 (2003). [CrossRef]
  32. D. E. Aspnes, E. Kinsbron, and D. D. Bacon, “Optical properties of Au: sample effects,” Phys. Rev. B 21, 3290-3299 (1980). [CrossRef]
  33. M. L. Thèye, “Investigation of the optical properties of Au by means of semitransparent films,” Phys. Rev. B 2, 3060-3078 (1970). [CrossRef]
  34. M. J. Weber, Handbook of Optical Materials (CRC, 2003).
  35. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  36. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  37. D. D. Smith, Y. Yoon, R. W. Boyd, J. K. Campbell, L. A. Baker, R. M. Crooks, and M. George, “Z-scan measurement of the nonlinear absorption of a thin gold film,” J. Appl. Phys. 86, 6200-6205 (1999). [CrossRef]
  38. V. V. Kruglyak, R. J. Hicken, M. Ali, B. J. Hickey, A. T. G. Pym, and B. K. Tanner, “Ultrafast third-order optical nonlinearity of noble and transition metal thin films,” J. Opt. A, Pure Appl. Opt. 7, S235-S240 (2005). [CrossRef]
  39. P. Wang, Y. Lu, L. Tang, J. Zhang, H. Ming, J. Xie, F. Ho, H. Chang, H. Lin, and D. Tsai, “Surface-enhanced optical nonlinearity of a gold film,” Opt. Commun. 229, 425-429 (2004). [CrossRef]
  40. D. D. Smith, G. Fischer, R. W. Boyd, and D. A. Gregory, “Cancellation of photoinduced absorption in metal nanoparticle composites through a counterintuitive consequence of local field effects,” J. Opt. Soc. Am. B 14, 1625-1631 (1997). [CrossRef]
  41. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited