OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 6 — Jun. 1, 2008
  • pp: A120–A132

Principal components generalized projections: a review [Invited]

Daniel J. Kane  »View Author Affiliations


JOSA B, Vol. 25, Issue 6, pp. A120-A132 (2008)
http://dx.doi.org/10.1364/JOSAB.25.00A120


View Full Text Article

Enhanced HTML    Acrobat PDF (1246 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Frequency-resolved optical gating (FROG) is a technique used to measure ultrafast laser pulses by optically producing a spectrogram, or FROG trace, of the measured pulse. While a great deal of information about the pulse can be gleaned from its FROG trace, quantitative pulse information must be obtained using an iterative two-dimensional phase retrieval algorithm. A general spectrogram/sonogram inversion algorithm called principal components generalized projections (PCGP) that can be applied to pulse measurement schemes, such as FROG, is reviewed. The algorithm is fast, robust, and can invert FROG traces in real time, making commercial pulse measurement systems based on FROG a reality. Measurement rates are no longer algorithm limited; they are data-acquisition limited. Also, because of some of its unique properties, the PCGP algorithm has found applications in measuring attosecond pulses and measuring telecommunications pulses. In addition, the PCGP structures the inversion and measurement process in a way that can allow new insights into convergence properties of spectrogram and sonogram inversion algorithms.

© 2008 Optical Society of America

OCIS Codes
(100.5070) Image processing : Phase retrieval
(320.0320) Ultrafast optics : Ultrafast optics
(320.5550) Ultrafast optics : Pulses
(320.7080) Ultrafast optics : Ultrafast devices
(320.7100) Ultrafast optics : Ultrafast measurements
(320.7160) Ultrafast optics : Ultrafast technology

ToC Category:
Measurement of Ultrashort Electromagnetic Pulses

History
Original Manuscript: November 30, 2007
Manuscript Accepted: January 27, 2008
Published: May 20, 2008

Virtual Issues
(2009) Advances in Optics and Photonics

Citation
Daniel J. Kane, "Principal components generalized projections: a review [Invited]," J. Opt. Soc. Am. B 25, A120-A132 (2008)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-25-6-A120


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. J. Kane and R. Trebino, “Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating,” IEEE J. Quantum Electron. 29, 571-579 (1993). [CrossRef]
  2. D. J. Kane and R. Trebino, “Single-shot measurement of the intensity and phase of a femtosecond laser pulse,” presented at Generation and Measurement of Ultrashort Laser Pulses, SPIE/OE Lase, Los Angeles, Calif., January 16-23 1993.
  3. D. J. Kane, A. J. Taylor, R. Trebino, and K. W. DeLong, “Single-shot measurement of the intensity and phase of a femtosecond UV laser pulse using frequency-resolved optical gating,” Opt. Lett. 19, 1061-1063 (1994). [CrossRef] [PubMed]
  4. R. Trebino and D. J. Kane, “Using phase retrieval to measure the intensity and phase of ultrashort laser pulses: frequency-resolved optical gating,” J. Opt. Soc. Am. A 10, 1101-1111 (1993). [CrossRef]
  5. S. Backus, J. Peatross, Z. Zeek, A. Rundquist, G. Taft, M. M. Murnane, and H. C. Kapteyn, “16-fs, 1-μJ ultraviolet pulses generated by third-harmonic conversion in air,” Opt. Lett. 21, 665-667 (1996). [CrossRef] [PubMed]
  6. P. R. Bolton, A. B. Bullock, C. D. Decker, M. D. Feit, A. J. P. Megofna, P. E. Young, and D. N. Fittinghoff, “Propagation of intense, ultraviolet laser pulses through metal vapor: refraction-limited behavior for single pulses,” J. Opt. Soc. Am. B 13, 336-346 (1996). [CrossRef]
  7. T. S. Clement, A. J. Taylor, and D. J. Kane, “Single-shot measurement of the amplitude and phase of ultrashort laser pulses in the violet,” Opt. Lett. 20, 70-72 (1995). [CrossRef] [PubMed]
  8. B. Kohler, V. V. Yakovlev, K. R. Wilson, J. Squier, K. W. DeLong, and R. Trebino, “Phase and intensity characterization of femtosecond pulses from a chirped-pulse amplifier by frequency-resolved optical gating,” Opt. Lett. 20, 483-485 (1995). [CrossRef] [PubMed]
  9. A. Kwok, L. Jusinski, M. A. Krumbugel, J. N. Sweetser, D. N. Fittinghoff, and R. Trebino, “Frequency-resolved optical gating using cascaded second-order nonlinearities,” IEEE J. Sel. Top. Quantum Electron. 4, 271-277 (1998). [CrossRef]
  10. J. N. Sweetser, D. N. Fittinghoff, and R. Trebino, “Transient-grating frequency-resolved optical gating,” Opt. Lett. 22, 519-521 (1997). [CrossRef] [PubMed]
  11. A. J. Taylor, G. Rodriguez, and T. S. Clement, “Determination of n2 by direct measurement of the optical phase,” Opt. Lett. 21, 1812-1814 (1996). [CrossRef] [PubMed]
  12. V. Wong and I. A. Walmsley, “Linear filter analysis of methods for ultrashort-pulse-shape measurements,” J. Opt. Soc. Am. B 12, 1491-1499 (1995). [CrossRef]
  13. F. Quéré, Y. Mairesse, and J. Itatani, “Temporal characterization of attosecond XUV fields,” J. Mod. Opt. 52, 339-360 (2005). [CrossRef]
  14. C. Dorrer and I. Kang, “Real-time implementation of linear spectrograms for the characterization of high-bit rate optical pulse trains,” IEEE Photon. Technol. Lett. 16, 858-860 (2004). [CrossRef]
  15. J. R. Fienup, “Reconstruction of a complex-valued object from the modulus of its Fourier transform using a support constraint,” J. Opt. Soc. Am. A 4, 118-124 (1987). [CrossRef]
  16. R. P. Milane, “Multidimensional phase problems,” J. Opt. Soc. Am. A 13, 725-734 (1996). [CrossRef]
  17. K. W. DeLong and R. Trebino, “Improved ultrashort phase-retrieval algorithm for frequency-resolved optical gating,” J. Opt. Soc. Am. A 11, 2429-2437 (1994). [CrossRef]
  18. K. W. DeLong, D. N. Fittinghoff, R. Trebino, B. Kohler, and K. R. Wilson, “Pulse retrieval in frequency-resolved optical gating based on the method of generalized projections,” Opt. Lett. 19, 2152-2154 (1994). [CrossRef] [PubMed]
  19. D. J. Kane, “New algorithm for the measurement of two ultrashort laser pulses from a single spectrogram,” presented at the Conference on Lasers and Electro-Optics, Baltimore, Md., May 19-23 1997.
  20. D. J. Kane, “Real time measurement of ultrashort laser pulses using principal component generalized projections,” IEEE J. Sel. Top. Quantum Electron. 4, 278-284 (1998). [CrossRef]
  21. K. W. DeLong, R. Trebino, J. Hunter, and W. E. White, “Frequency-resolved optical gating with the use of second-harmonic generation,” J. Opt. Soc. Am. B 11, 2206-2215 (1994). [CrossRef]
  22. J. Paye, M. Ramaswamy, J. G. Fujimoto, and E. P. Ippen, “Measurement of the amplitude and phase of ultrashort light pulses from spectrally resolved autocorrelation,” Opt. Lett. 18, 1946-1948 (1993). [CrossRef] [PubMed]
  23. D. T. Reid, “Algorithm for complete and rapid retrieval of ultrashort pulse, amplitude and phase from a sonogram,” IEEE J. Quantum Electron. 35, 1584-1589 (1999). [CrossRef]
  24. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277-3295 (1997). [CrossRef]
  25. Y. Yang, N. P. Galatsanos, and H. Stark, “Projection-based blind deconvolution,” J. Opt. Soc. Am. A 11, 2401-2409 (1994). [CrossRef]
  26. E. Yudilevich, A. Levi, G. J. Habetler, and H. Stark, “Restoration of signals from their signed Fourier-transform magnitude by the method of generalized projections,” J. Opt. Soc. Am. A 4, 236-246 (1987). [CrossRef]
  27. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, 1995).
  28. K. W. DeLong, C. L. Ledera, R. Trebino, B. Kohler, and K. R. Wilson, “Ultrashort-pulse measurement using noninstantaneous nonlinearities: Raman effects in frequency-resolved optical gating,” Opt. Lett. 20, 486-488 (1995). [CrossRef] [PubMed]
  29. K. W. DeLong, R. Trebino, and W. E. White, “Simultaneous recovery of two ultrashort laser pulses from a single spectrogram,” J. Opt. Soc. Am. B 12, 2463-2466 (1995). [CrossRef]
  30. D. J. Kane, “Recent progress toward real-time measurement of ultrashort laser pulses,” IEEE J. Quantum Electron. 35, 421-431 (1999). [CrossRef]
  31. A. K. Jain, Fundamentals of Digital Image Processing, 1st ed. (Prentice Hall, 1989).
  32. H. Anton, Elementary Linear Algebra, 2nd ed. (Wiley, 1977).
  33. C. W. Siders, A. J. Taylor, and M. C. Downer, “Multi-pulse interferometric frequency-resolved optical gating: real time phase-sensitive imaging of ultrafast dynamics,” Opt. Lett. 22, 624-626 (1997). [CrossRef] [PubMed]
  34. C. W. Siders, J. L. W. Siders, and A. J. Taylor, “Femtosecond coherent spectroscopy at 800nm: MI-FROG measures high-field ionization rates in gases,” presented at the Ultrafast Phenomena XI, Garmisch-Partenkirchen, Germany, July 12-17 1998.
  35. D. J. Kane, J. Weston, and K.-C. J. Chu, “Real-time inversion of polarization gate frequency resolved optical gating spectrograms,” Appl. Opt. 42, 1140-1144 (2003). [CrossRef] [PubMed]
  36. P. O'Shea, M. Kimmel, X. Gu, and R. Trebino, “Highly simplified device for ultrashort-pulse measurement,” Opt. Lett. 26, 932-934 (2001). [CrossRef]
  37. D. J. Kane, G. Rodriguez, A. J. Taylor, and T. Clement, “Simultaneous measurement of two ultrashort laser pulses from a single spectrogram in a single shot,” J. Opt. Soc. Am. B 14, 935-943 (1997). [CrossRef]
  38. Y. Mairesse and F. Quéré, “Frequency-resolved optical gating for the complete reconstruction of attosecond bursts,” Phys. Rev. A 71, 011401 (2005). [CrossRef]
  39. I. Thomann, E. Gregonis, M. Murnane, and H. Kapteyn, “Temporal Characterization of Energy-Tunable EUV Pulses in the Sub-Optical-Cycle Regime Using FROG-CRAB,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CPDB4. [PubMed]
  40. G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443-446 (2006). [CrossRef] [PubMed]
  41. C. H. Nam, K. T. Kim, K. S. Kang, D. H. Ko, and J. Y. Park, “Complete temporal reconstruction of attosecond harmonic pulses,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CTuW3. [PubMed]
  42. Fabien Quéré (Personal communication).
  43. D. J. Kane, F. G. Omenetto, and A. J. Taylor, “Convergence test for inversion of frequency-resolved optical gating spectrograms,” Opt. Lett. 25, 1216-1218 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited