OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 6 — Jun. 1, 2008
  • pp: A13–A16

Gold-SPIDER: spectral phase interferometry for direct electric field reconstruction utilizing sum-frequency generation from a gold surface

Matthew E. Anderson, Tobias Witting, and Ian A. Walmsley  »View Author Affiliations


JOSA B, Vol. 25, Issue 6, pp. A13-A16 (2008)
http://dx.doi.org/10.1364/JOSAB.25.000A13


View Full Text Article

Enhanced HTML    Acrobat PDF (269 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on a version of spectral phase interferometry for direct electric field reconstruction (SPIDER) that uses no nonlinear crystals, instead relying on the harmonic signal from a gold mirror. Surface harmonic generation holds the promise of being able to upconvert extremely broad bandwidths over a large tuning range, thus providing access to both extremely short pulses and wavelengths outside of traditional methods. In this proof of principle demonstration, SPIDER traces for chirped and transform-limited 55 fs pulses are presented.

© 2008 Optical Society of America

OCIS Codes
(320.0320) Ultrafast optics : Ultrafast optics
(320.7100) Ultrafast optics : Ultrafast measurements

ToC Category:
Measurement of Ultrashort Electromagnetic Pulses

History
Original Manuscript: November 2, 2007
Revised Manuscript: December 18, 2007
Manuscript Accepted: December 19, 2007
Published: April 7, 2008

Citation
Matthew E. Anderson, Tobias Witting, and Ian A. Walmsley, "Gold-SPIDER: spectral phase interferometry for direct electric field reconstruction utilizing sum-frequency generation from a gold surface," J. Opt. Soc. Am. B 25, A13-A16 (2008)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-25-6-A13


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. J. Bradley and G. H. C. New, “Ultrashort pulse measurements,” Proc. IEEE 62, 313-345 (1974). [CrossRef]
  2. K. Naganuma, K. Mogi, and H. Yamada, “General method for ultrashort light pulse chirp measurement,” IEEE J. Quantum Electron. 25, 1225-1233 (1989). [CrossRef]
  3. D. J. Kane and R. Trebino, “Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using frequency-resolved optical gating,” Opt. Lett. 18, 823-825 (1993). [CrossRef] [PubMed]
  4. J. W. Nicholson, J. Jasapara, W. Rudolph, F. G. Omenetto, and A. J. Taylor, “Full-field characterization of femtosecond pulses by spectrum and cross-correlation measurements,” Opt. Lett. 24, 1774-1776 (1999). [CrossRef]
  5. I. G. Cormack, W. Sibbett, and D. T. Reid, “Rapid measurement of ultrashort-pulse amplitude and phase from a two-photon absorption sonogram trace,” J. Opt. Soc. Am. B 18, 1377-1382 (2001). [CrossRef]
  6. C. Iaconis and I. A. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Opt. Lett. 23, 792-794 (1998). [CrossRef]
  7. D. T. Reid, M. Padgett, C. McGowan, W. E. Sleat, and W. Sibbett, “Light-emitting diodes as measurement devices for femtosecond laser pulses,” Opt. Lett. 22, 233-235 (1997). [CrossRef] [PubMed]
  8. I. G. Cormack, W. Sibbett, and D. T. Reid, “Practical measurement of femtosecond optical pulses using time-resolved optical gating,” Opt. Commun. 194, 415-424 (2001). [CrossRef]
  9. A. Monmayrant, M. Joffre, T. Oksenhendler, R. Herzog, D. Kaplan, and P. Tournois, “Time-domain interferometry for direct electric-field reconstruction by use of an acousto-optic programmable filter and a two-photon detector,” Opt. Lett. 28, 278-280 (2003). [CrossRef] [PubMed]
  10. J. K. Ranka, A. L. Gaeta, A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, “Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a gaasp photodiode,” Opt. Lett. 22, 1344-1346 (1997). [CrossRef]
  11. E. J. Canto-Said, P. Simon, C. Jordan, and G. Marowsky, “Surface second-harmonic generation in Si(111) for autocorrelation measurements of 248-nm femtosecond pulses,” Opt. Lett. 18, 2038-2040 (1993). [CrossRef] [PubMed]
  12. W. Plaß, H. Rottke, W. Heuer, G. Eichhorn, and H. Zacharias, “Surface sum-frequency mixing for auto- and cross-correlation of ultrashort UV and IR pulses,” Appl. Phys. B: Photophys. Laser Chem. 54, 199-201 (1992). [CrossRef]
  13. Q. Lin, K. Wright, G. P. Agrawal, and C. Guo, “Spectral responsitivity and efficiency of metal-based femtosecond autocorrelation technique,” Opt. Commun. 242, 279-283 (2004). [CrossRef]
  14. T. Tsang, “Reflected optical harmonics from dielectric mirrors,” Appl. Opt. 33, 7720-7723 (1994). [CrossRef] [PubMed]
  15. N. Bloembergen and P. S. Pershan, “Light waves at the boundary of nonlinear media,” Phys. Rev. 128, 606-622 (1962). [CrossRef]
  16. Y. R. Shen, “Optical second harmonic generation at interfaces,” Annu. Rev. Phys. Chem. 40, 327-350 (1989). [CrossRef]
  17. F. Brown and M. Matsuoka, “Effect of adsorbed surface layers on second-harmonic light from silver,” Phys. Rev. 185, 985-987 (1969). [CrossRef]
  18. N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical second-harmonic generation in reflection from media with inversion symmetry,” Phys. Rev. 174, 813-822 (1968). [CrossRef]
  19. C. K. Chen, A. R. B. de Castro, and Y. R. Shen, “Surface-enhanced second-harmonic generation,” Phys. Rev. Lett. 46, 145-148 (1981). [CrossRef]
  20. N. A. Papadogiannis, S. D. Moustaizis, P. A. Loukakos, and C. Kalpouzos, “Temporal characterization of ultra short laser pulses based on multiple harmonic generation on a gold surface,” Appl. Phys. B: Photophys. Laser Chem. 65, 339-345 (1997). [CrossRef]
  21. J. Dai, H. Teng, and C. Guo, “Second- and third-order interferometric autocorrelations based on harmonic generations from metal surfaces,” Opt. Commun. 252, 173-178 (2005). [CrossRef]
  22. S. T. Cundiff, W. H. Knox, F. H. Baumann, K. W. Evans-Lutterodt, M.-T. Tang, M. L. Green, and H. M. van Driel, “Si/SiO2, interface roughness: comparison between surface second harmonic generation and x-ray scattering,” Appl. Phys. Lett. 1414-1416 (1997). [CrossRef]
  23. D. Meshulach, Y. Barad, and Y. Silberberg, “Measurement of ultrashort optical pulses by third-harmonic generation,” J. Opt. Soc. Am. B 14, 2122-2125 (1997). [CrossRef]
  24. T. Tsang, M. A. Krumbugel, K. W. DeLong, D. N. Fittinghoff, and R. Trebino, “Frequency-resolved optical-gating measurements of ultrashort pulses using surface third-harmonic generation,” Opt. Lett. 21, 1381-1383 (1996). [CrossRef] [PubMed]
  25. V. A. Zubov and T. I. Kuznetsova, “Solution of the phase problem for time-dependent optical signals by an interference system,” Sov. J. Quantum Electron. 21, 1285-1286 (1991). [CrossRef]
  26. V. Wong and I. A. Walmsley, “Analysis of ultrashort pulse-shape measurement using linear interferometers,” Opt. Lett. 19, 287-289 (1994). [CrossRef] [PubMed]
  27. P. Londero, M. E. Anderson, C. Radzewicz, C. Iaconis, and I. A. Walmsley, “Measuring ultrafast pulses in the near-ultraviolet using spectral phase interferometry for direct electric field reconstruction,” J. Mod. Opt. 50, 179-184 (2003). [CrossRef]
  28. A. S. Wyatt, I. A. Walmsley, G. Stibenz, and G. Steinmeyer, “Sub-10 fs pulse characterization using spatially encoded arrangement for spectral phase interferometry for direct electric field reconstruction,” Opt. Lett. 31, 1914-1916 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited