OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 7 — Jul. 1, 2008
  • pp: 1096–1104

Confined optical field based on surface plasmon polaritons and the interactions with nanospheres

Qingyan Wang, Jia Wang, and Shulian Zhang  »View Author Affiliations

JOSA B, Vol. 25, Issue 7, pp. 1096-1104 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (720 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A type of surface-plasmon-polariton bandgap structure for generating a confined nanometric optical field with high intensity and very small sidelobes is simulated by using the finite-difference time-domain method. The numerical results show that the intensity enhancement of the confined field can reach 2 orders of magnitude, with a resolution (FWHM of the zero-order mode) of 0.33 λ and the high-order modes (sidelobes) being effectively suppressed to no more than 15%. These properties ensure the confined field to be used as a near-field source. Detailed and systematic investigations of the enhancement and the localization versus the structure parameters are performed, and the physical mechanisms behind these phenomena are explained. Potential applications of the confined field in near-field detection and imaging are discussed through interactions with different types of nanospheres. The simulated results reveal that details with feature sizes down to 0.13 λ can be resolved.

© 2008 Optical Society of America

OCIS Codes
(240.0240) Optics at surfaces : Optics at surfaces
(240.6680) Optics at surfaces : Surface plasmons
(180.4243) Microscopy : Near-field microscopy

ToC Category:
Optics at Surfaces

Original Manuscript: December 18, 2007
Revised Manuscript: March 14, 2008
Manuscript Accepted: April 22, 2008
Published: June 2, 2008

Qingyan Wang, Jia Wang, and Shulian Zhang, "Confined optical field based on surface plasmon polaritons and the interactions with nanospheres," J. Opt. Soc. Am. B 25, 1096-1104 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651-653 (1984). [CrossRef]
  2. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468-1470 (1991). [CrossRef] [PubMed]
  3. A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H. J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515-1517 (1999). [CrossRef]
  4. K. Tanaka and M. Tanaka, “Simulation of confined and enhanced optical near-fields for an I-shaped aperture in a pyramidal structure on a thick metallic screen,” J. Appl. Phys. 95, 3765-3771 (2004). [CrossRef]
  5. E. X. Jin and X. Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett. 88, 153110-153113 (2006). [CrossRef]
  6. T. Grosjean and D. Courjon, “Immaterial tip concept by light confinement,” J. Microsc. 202, 273-278 (2001). [CrossRef] [PubMed]
  7. T. Grosjean, D. Courjon, and D. Van Labeke, “Bessel beams as virtual tips for near-field optics,” J. Microsc. 210, 319-323 (2003). [CrossRef] [PubMed]
  8. T. Hong, J. Wang, L. Sun, and D. Li, “Numerical simulation analysis of a near-field optical virtual probe,” Appl. Phys. Lett. 81, 3452-3454 (2002). [CrossRef]
  9. T. Hong, J. Wang, L. Sun, and D. Li, “Numerical and experimental research on the near-field optical virtual probe,” Scanning 26, 57-62 (2004).
  10. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131-314 (2005). [CrossRef]
  11. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998). [CrossRef]
  12. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820-822 (2002). [CrossRef] [PubMed]
  13. D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77, 1569-1571 (2000). [CrossRef]
  14. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114-1117 (2001). [CrossRef] [PubMed]
  15. A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81, 4327-4329 (2002). [CrossRef]
  16. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003). [CrossRef] [PubMed]
  17. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004). [CrossRef] [PubMed]
  18. A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt. 7, 90-96 (2005). [CrossRef]
  19. J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys. 2, 120-123 (2006). [CrossRef]
  20. Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85, 642-644 (2004). [CrossRef]
  21. B. Wang and G. P. Wang, “Directional beaming of light from a nanoslit surrounded by metallic heterostructures,” Appl. Phys. Lett. 88, 013114 (2006). [CrossRef]
  22. M. Durach, A. Rusina, M. I. Stockman, and K. Nelson, “Toward full spatiotemporal control on the nanoscale,” Nano Lett. 7, 3145-3149 (2007). [CrossRef] [PubMed]
  23. Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280, 10-15 (2007). [CrossRef]
  24. H. Shi, C. Du, and X. Luo, “Focal length modulation based on a metallic slit surrounded with grooves in curved depths,” Appl. Phys. Lett. 91, 093111 (2007). [CrossRef]
  25. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003). [CrossRef] [PubMed]
  26. I. P. Radko, T. Sondergaard, and S. I. Bozhevolnyi, “Adiabatic bends in surface plasmon polariton band gap structures,” Opt. Express 14, 4107-4114 (2006). [CrossRef] [PubMed]
  27. B. Wang and G. P. Wang, “Confining light in two-dimensional slab photonic crystal waveguides with metal plates,” Appl. Phys. Lett. 88, 193128 (2006). [CrossRef]
  28. V. S. Volkov, S. I. Bozhevolnyi, L. H. Frandsen, and M. Kristensen, “Direct observation of surface mode excitation and slow light coupling in photonic crystal waveguides,” Nano Lett. 7, 2341-2345 (2007). [CrossRef] [PubMed]
  29. S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 77, 2670-2673 (1996). [CrossRef] [PubMed]
  30. B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107 (2005). [CrossRef]
  31. E. Descrovi, V. Paeder, L. Vaccaro, and H.-P. Herzig, “A virtual optical probe based on localized surface plasmon polaritons,” Opt. Express 13, 7017-7027 (2005). [CrossRef] [PubMed]
  32. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  33. Z. Liao, H. L. Wong, Y. Baipo, and Y. Yuan, “Transmitting boundary for transient wave analyses,” Sci. Sin., Ser. A 27, 1063-1076 (1984).
  34. H. Gai, J. Wang, and Q. Tian, “Modified Debye model parameters of metals applicable for broadband calculations,” Appl. Opt. 46, 2229-2233 (2007). [CrossRef] [PubMed]
  35. A. Bouhelier, T. Huser, H. Tamaru, H. J. Guntherodt, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63, 155404 (2001). [CrossRef]
  36. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227-6244 (1996). [CrossRef]
  37. M. Derouard, J. Hazart, G. Lerondel, R. Bachelot, P.-M. Adam, and P. Royer, “Polarization-sensitive printing of surface plasmon interferences,” Opt. Express 15, 4238-4246 (2007). [CrossRef] [PubMed]
  38. A. Dereux, J. P. Vigneron, P. Lambin, and A. A. Lucas, “Theory of near-field optics with applications to SNOM and optical binding,” Physica B 175, 65-67 (1991). [CrossRef]
  39. O. Keller, X. Mufei, and S. Bozhevolnyi, “Configurational resonances in optical near-field microscopy: a rigorous point-dipole approach,” Surf. Sci. 280, 217-230 (1993). [CrossRef]
  40. P. J. Valle, J. J. Greffet, and R. Carminati, “Optical contrast, topographic contrast and artifacts in illumination-mode scanning near-field optical microscopy,” J. Appl. Phys. 86, 648-656 (1999). [CrossRef]
  41. S. Wang, “Analysis of probe-sample interaction in near-field optical image of dielectric structures,” Microsc. Microanal. 5, 290-295 (1999). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited