OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 7 — Jul. 1, 2008
  • pp: 1118–1126

Combined analytical-finite difference time-domain full wave simulation of mode-locked vertical-extended-cavity semiconductor lasers

Philipp Kreuter and Bernd Witzigmann  »View Author Affiliations

JOSA B, Vol. 25, Issue 7, pp. 1118-1126 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (659 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A time-domain approach based on the finite difference time-domain (FDTD) method is described for vertical-extended-cavity surface-emitting lasers (VECSELs). To permit the simulation of realistic devices with large extended cavities a combined analytical-FDTD model is developed. This approach uses plane wave propagation in the linear extended cavity to couple the active mirror and the semiconductor saturable absorber mirror (SESAM) in which the standard FDTD method is applied. This allows for a significant computational time reduction. The material response in the active quantum wells (QWs) and the absorber is incorporated by an infinite impulse response digital filter. The model is validated by the simulation of a passively mode-locked VECSEL with a multiple QW active region and a single QW SESAM.

© 2008 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(140.4050) Lasers and laser optics : Mode-locked lasers
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW
(250.7270) Optoelectronics : Vertical emitting lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: December 19, 2007
Revised Manuscript: March 11, 2008
Manuscript Accepted: April 6, 2008
Published: June 5, 2008

Philipp Kreuter and Bernd Witzigmann, "Combined analytical-finite difference time-domain full wave simulation of mode-locked vertical-extended-cavity semiconductor lasers," J. Opt. Soc. Am. B 25, 1118-1126 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. C. Tropper, H. D. Foreman, A. Garnache, K. G. Wilcox, and S. H. Hoogland, “Vertical-external-cavity semiconductor lasers,” J. Phys. D 37, R75-R85 (2004). [CrossRef]
  2. U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep. 429, 67-120 (2006). [CrossRef]
  3. U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435-453 (1996). [CrossRef]
  4. A. Garnache, S. Hoogland, A. C. Tropper, I. Sagnes, G. Saint-Girons, and J. S. Roberts, “Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100-mW average power,” Appl. Phys. Lett. 80, 3892-3894 (2002). [CrossRef]
  5. H. A. Haus, “Theory of mode locking with a fast saturable absorber,” J. Appl. Phys. 46, 3049-3058 (1975). [CrossRef]
  6. R. Paschotta, R. Häring, A. Garnache, S. Hoogland, A. C. Tropper, and U. Keller, “Soliton-like pulse-shaping mechanism in passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B 75, 445-451 (2002). [CrossRef]
  7. J. Mulet and S. Balle, “Mode-locking dynamics in electrically driven vertical-external-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 41, 1148-1156 (2005). [CrossRef]
  8. M. Bahl, N. C. Panoiu, and R. M. Osgood, “Modeling ultrashort field dynamics in surface emitting lasers by using finite-difference time-domain method,” IEEE J. Quantum Electron. 41, 1244-1252 (2005). [CrossRef]
  9. C. Z. Ning, R. A. Indik, and J. V. Moloney, “Self-consistent approach to thermal effects in vertical-cavity surface-emitting lasers,” J. Opt. Soc. Am. B 12, 1993-2004 (1995). [CrossRef]
  10. M. Bahl, N. C. Panoiu, and R. M. Osgood, “Novel optical and thermal modeling for modelocked VCSELS,” in Proceedings of the IEEE Lightwave Technologies in Instrumentation and Measurement Conference (IEEE, 2004), pp. 17-22. [CrossRef]
  11. C. Z. Ning, R. A. Indik, and J. V. Moloney, “Effective bloch equations for semiconductor lasers and amplifiers,” IEEE J. Quantum Electron. 33, 1543-1550 (1997). [CrossRef]
  12. W. W. Chow and S. W. Koch, Semiconductor-Laser Fundamentals: Physics of the Gain Materials (Springer-Verlag, 1999).
  13. R. Binder, D. Scott, A. E. Paul, M. Lindberg, K. Henneberger, and S. W. Koch, “Carrier-carrier scattering and optical dephasing in highly excited semiconductors,” Phys. Rev. B 45, 1107-1115 (1992). [CrossRef]
  14. W. H. Weedon and C. M. Rappaport, “A general method for FDTD modeling of wave propagation in arbitrary frequency-dispersive media,” IEEE Trans. Antennas Propag. 45, 401-410 (1997). [CrossRef]
  15. J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Series in Computational Mathematics (Prentice-Hall, 1983). [PubMed]
  16. D. M. Sullivan, Electromagnetic Simulation using the FDTD Method, IEEE Press Series on RF and Microwave Technology (IEEE, 2000). [CrossRef] [PubMed]
  17. L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing, Computational Microelectronics (Prentice-Hall, 1975).
  18. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 1995).
  19. C. S. Shin and R. Nevels, “Optimizing the Gaussian excitation function in the finite difference time domain method,” IEEE Trans. Educ. 45, 15-18 (2002). [CrossRef]
  20. D. Sullivan and J. L. Young, “Far-field time-domain calculation from aperture radiators using the FDTD method,” IEEE Trans. Antennas Propag. 49, 464-469 (2001). [CrossRef]
  21. O. M. Ramahi, “Near- and far-field calculations in FDTD simulations using Kirchhoff surface integral representation,” IEEE Trans. Antennas Propag. 45, 753-759 (1997). [CrossRef]
  22. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815-5875 (2001). [CrossRef]
  23. A. Christ, Analysis and Improvement of the Numerical Properties of the FDTD Algorithm, Series in Microelectronics (Hartung-Gorre, 2005, Vol. 160).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited