OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 7 — Jul. 1, 2008
  • pp: 1156–1165

Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectrometry signals from optically saturated transitions under low pressure conditions

Aleksandra Foltynowicz, Weiguang Ma, Florian M. Schmidt, and Ove Axner  »View Author Affiliations


JOSA B, Vol. 25, Issue 7, pp. 1156-1165 (2008)
http://dx.doi.org/10.1364/JOSAB.25.001156


View Full Text Article

Enhanced HTML    Acrobat PDF (681 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The influence of optical saturation on noise-immune cavity-enhanced optical heterodyne molecular spectrometry (NICE-OHMS) signals from purely Doppler-broadened transitions is investigated experimentally. It is shown that the shape and the strength of the dispersion signal are virtually unaffected by optical saturation, whereas the strength of the absorption signal decreases as ( 1 + G ± 1 ) 1 2 , where G ± 1 is the degree of saturation induced by the sideband of the frequency-modulated triplet, in agreement with theoretical predictions. This implies, first of all, that Doppler-broadened NICE-OHMS is affected less by optical saturation than other cavity-enhanced techniques but also that it exhibits nonlinearities in the power and pressure dependence for all detection phases except pure dispersion. A methodology for assessments of the degree of saturation and the saturation power of a transition from Doppler-broadened NICE-OHMS signals is given. The implications of optical saturation for practical trace species detection by Doppler-broadened NICE-OHMS are discussed.

© 2008 Optical Society of America

OCIS Codes
(300.1030) Spectroscopy : Absorption
(300.6310) Spectroscopy : Spectroscopy, heterodyne
(300.6360) Spectroscopy : Spectroscopy, laser
(300.6380) Spectroscopy : Spectroscopy, modulation
(300.6460) Spectroscopy : Spectroscopy, saturation

ToC Category:
Spectroscopy

History
Original Manuscript: January 10, 2008
Revised Manuscript: April 29, 2008
Manuscript Accepted: April 30, 2008
Published: June 24, 2008

Citation
Aleksandra Foltynowicz, Weiguang Ma, Florian M. Schmidt, and Ove Axner, "Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectrometry signals from optically saturated transitions under low pressure conditions," J. Opt. Soc. Am. B 25, 1156-1165 (2008)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-25-7-1156


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Ye, L. S. Ma, and J. L. Hall, “Ultrasensitive detections in atomic and molecular physics: Demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B 15, 6-15 (1998). [CrossRef]
  2. A. Foltynowicz, F. M. Schmidt, W. Ma, and O. Axner, “Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential,” (accepted for publication in Appl. Phys. B).
  3. J. Ye, L. S. Ma, and J. L. Hall, “Sub-Doppler optical frequency reference at 1.064μm by means of ultrasensitive cavity-enhanced frequency modulation spectroscopy of a C2HD overtone transition,” Opt. Lett. 21, 1000-1002 (1996). [CrossRef]
  4. J. Ye, L. S. Ma, and J. L. Hall, “Ultrastable optical frequency reference at 1.064μm using a C2HD molecular overtone transition,” IEEE Trans. Instrum. Meas. 46, 178-182 (1997). [CrossRef]
  5. C. Ishibashi and H. Sasada, “Highly sensitive cavity-enhanced sub-Doppler spectroscopy of a molecular overtone band with a 1.66μm tunable diode laser,” Jpn. J. Appl. Phys., Part 1 38, 920-922 (1999). [CrossRef]
  6. L. Gianfrani, R. W. Fox, and L. Hollberg, “Cavity-enhanced absorption spectroscopy of molecular oxygen,” J. Opt. Soc. Am. B 16, 2247-2254 (1999). [CrossRef]
  7. N. J. van Leeuwen and A. C. Wilson, “Measurement of pressure-broadened, ultraweak transitions with noise-immune cavity-enhanced optical heterodyne molecular spectroscopy,” J. Opt. Soc. Am. B 21, 1713-1721 (2004). [CrossRef]
  8. J. Bood, A. McIlroy, and D. L. Osborn, “Measurement of the sixth overtone band of nitric oxide, and its dipole moment function, using cavity-enhanced frequency modulation spectroscopy,” J. Chem. Phys. 124, 084311 (2006). [CrossRef]
  9. M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, “Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared,” Spectrochim. Acta, Part A 60, 3457-3468 (2004). [CrossRef]
  10. F. M. Schmidt, A. Foltynowicz, W. Ma, and O. Axner, “Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry for Doppler-broadened detection of C2H2 in the parts per trillion range,” J. Opt. Soc. Am. B 24, 1392-1405 (2007). [CrossRef]
  11. F. M. Schmidt, A. Foltynowicz, W. Ma, T. Lock, and O. Axner, “Doppler-broadened fiber-laser-based NICE-OHMS--improved detectability,” Opt. Express 15, 10822-10831 (2007). [CrossRef]
  12. S. S. Brown, H. Stark, and A. R. Ravishankara, “Cavity ring-down spectroscopy for atmospheric trace gas detection: Application to the nitrate radical (NO3),” Appl. Phys. B 75, 173-182 (2002). [CrossRef]
  13. W. Demtröder, Laser Spectroscopy, 2nd ed. (Springer Verlag, 1996).
  14. W. Ma, A. Foltynowicz, and O. Axner, “Theoretical description of Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy under optically saturated conditions,” J. Opt. Soc. Am. B 25, 1144-1155 (2008). [CrossRef]
  15. M. Simeckova, D. Jacquemart, L. S. Rothman, R. R. Gamache, and A. Goldman, “Einstein A-coefficients and statistical weights for molecular absorption transitions in the HITRAN database,” J. Quant. Spectrosc. Radiat. Transf. 98, 130-155 (2006). [CrossRef]
  16. S. W. North, X. S. Zheng, R. Fei, and G. E. Hall, “Line shape analysis of Doppler broadened frequency-modulated line spectra,” J. Chem. Phys. 104, 2129-2135 (1996). [CrossRef]
  17. A. E. Siegman, Lasers (University Science Books, 1986).
  18. K. Shimoda, N. Bloembergen, V. P. Chebotayev, J. L. Hall, S. Haroche, P. Jacquinot, V. S. Letokhov, M. D. Levenson, and J. A. Magyar, High-Resolution Laser Spectroscopy (Springer-Verlag, 1976).
  19. L. S. Ma, J. Ye, P. Dube, and J. L. Hall, “Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: Theory and application to overtone transitions of C2H2 and C2HD,” J. Opt. Soc. Am. B 16, 2255-2268 (1999). [CrossRef]
  20. R. W. P. Drever, J. L. H. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using optical resonator,” Appl. Phys. B 31, 97-105 (1983). [CrossRef]
  21. R. G. DeVoe and R. G. Brewer, “Laser frequency division and stabilization,” Phys. Rev. A 30, 2827-2829 (1984). [CrossRef]
  22. L. S. RothmanD. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” JQSRT 96(2), 139-204 (2005).
  23. F. M. Schmidt, W. Ma, A. Foltynowicz, and O. Axner are preparing a paper to be called “Probing the free-spectral-range of a high finesse optical cavity with dual frequency modulation spectroscopy--application to trace species detection.”
  24. O. Axner, W. Ma, and A. Foltynowicz, “Sub-Doppler dispersion and noise-immune cavity-enhanced optical heterodyne molecular spectroscopy revised,” J. Opt. Soc. Am. B 25, 1166-1177 (2008). [CrossRef]
  25. C. J. Borde, J. L. Hall, C. V. Kunasz, and D. G. Hummer, “Saturation absorption line shape: Calculation of the transit-time broadening by a perturbation approach,” Phys. Rev. A 14, 236-263 (1975). [CrossRef]
  26. M. H. Wappelhorst, M. Murtz, P. Palm, and W. Urban, “Very high resolution CO laser spectrometer and first sub-Doppler line-shape studies near 60THz(5μm),” Appl. Phys. B 65, 25-32 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited