OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 7 — Jul. 1, 2008
  • pp: 1178–1186

Dynamics of an ultrahigh-repetition-rate passively mode-locked Raman fiber laser

Jochen Schröder, Dario Alasia, Thibaut Sylvestre, and Stéphane Coen  »View Author Affiliations

JOSA B, Vol. 25, Issue 7, pp. 1178-1186 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (502 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an extended study of an ultrahigh-repetition-rate Raman fiber laser passively mode-locked through dissipative four-wave mixing. We demonstrate mode locking at 100 and 160 GHz repetition rates, corresponding to harmonic frequencies more than 400,000 times the cavity resonance frequency. By varying the output coupling ratio we are able to change the threshold and slope efficiency of the laser. The maximum average output power achieved was 926 mW , a further twofold increase of the output power reported previously for this type of laser. Further numerical analysis reveals that the main factor limiting the pulse quality of our setup is supermode noise. Subsequently, we experimentally investigate the use of all-fiber subcavity Fabry–Perot filters to reduce the noise and demonstrate a significant improvement in the laser operation.

© 2008 Optical Society of America

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(140.3550) Lasers and laser optics : Lasers, Raman
(140.4050) Lasers and laser optics : Mode-locked lasers
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(140.3425) Lasers and laser optics : Laser stabilization

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 24, 2008
Revised Manuscript: May 2, 2008
Manuscript Accepted: May 2, 2008
Published: June 25, 2008

Jochen Schröder, Dario Alasia, Thibaut Sylvestre, and Stéphane Coen, "Dynamics of an ultrahigh-repetition-rate passively mode-locked Raman fiber laser," J. Opt. Soc. Am. B 25, 1178-1186 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. P. Ippen, “Principles of passive mode locking,” Appl. Phys. B B58, 159-170 (1994). [CrossRef]
  2. C. J. S. de Matos, D. A. Chestnut, and J. R. Taylor, “Low-threshold self-induced modulational instability ring laser in highly nonlinear fiber yielding a continuous-wave 262-GHz soliton train,” Opt. Lett. 27, 915-917 (2002). [CrossRef]
  3. S. Zhang, F. Li, X. Dong, P. Shum, X. Yang, X. Zhou, Y. Gong, and C. Lu, “Passive mode locking at harmonics of the free spectral range of the intracavity filter in a fiber ring laser,” Opt. Lett. 30, 2852-2854 (2005). [CrossRef]
  4. D. Panasenko, P. Polynkin, A. Polynkin, J. V. Moloney, M. Mansuripur, and N. Peyghambarian, “Er-Yb femtosecond ring fiber oscillator with 1.1-W average power and GHz repetition rates,” IEEE Photon. Technol. Lett. 18, 853-855 (2006). [CrossRef]
  5. S. Coen and M. Haelterman, “Continuous-wave ultrahigh-repetition-rate pulse-train generation through modulational instability in a passive fiber cavity,” Opt. Lett. 26, 39-41 (2001). [CrossRef]
  6. P. Honzatko, P. Peterka, and J. Kanka, “Modulational-instability sigma-resonator fiber laser,” Opt. Lett. 26, 810-812 (2001). [CrossRef]
  7. P. Franco, F. Fontana, I. Cristiani, M. Midrio, and M. Romagnoli, “Self-induced modulational-instability laser,” Opt. Lett. 20, 2009-2011 (1995). [CrossRef]
  8. E. Yoshida and M. Nakazawa, “Low-threshold 115-GHz continuous-wave modulational-instability erbium-doped fiber laser,” Opt. Lett. 22, 1409-1411 (1997). [CrossRef]
  9. D. A. Chestnut and J. R. Taylor, “Wavelength-versatile subpicosecond pulsed lasers using Raman gain in figure-of-eight fiber geometries,” Opt. Lett. 30, 2982-2984 (2005). [CrossRef]
  10. M. Nakazawa, K. Tamura, and E. Yoshida, “Supermode noise suppression in a harmonically modelocked fibre laser by selfphase modulation and spectral filtering,” Electron. Lett. 32, 461-463 (1996). [CrossRef]
  11. L. Yuhua, L. Caiyun, W. Jian, W. Boyu, and G. Yizhi, “Novel method to simultaneously compress pulses and suppress supermode noise in actively mode-locked fiber ring laser,” IEEE Photon. Technol. Lett. 10, 1250-1252 (1998). [CrossRef]
  12. Y. Ding, Y. Wang, Z. G. Li, L. Tan, and S. Li, “Pulse amplitude equalization in a harmonically mode-locked fiber laser using a dispersion imbalanced nonlinear loop mirror,” Opt. Commun. 225, 363-369 (2003). [CrossRef]
  13. O. Pottiez, O. Deparis, M. Haelterman, R. Kiyan, P. Emplit, P. Megret, and M. Blondel, “Experimental study of supermode noise of harmonically mode-locked erbium-doped fibre lasers with composite cavity,” Opt. Commun. 202, 161-167 (2002). [CrossRef]
  14. K. K. Gupta, N. Onodera, M. Hyodo, M. Watanabe, and J. Ravikumar, “Evaluation of amplitude-stabilized optical pulse trains from rational harmonically mode-locked fiber ring lasers,” J. Lightwave Technol. 22, 1935-1945 (2004). [CrossRef]
  15. G.-R. Lin, M.-C. Wu, and Y.-C. Chang, “Suppression of phase and supermode noise in a harmonic mode-locked erbium-doped fiber laser with a semiconductor-optical-amplifier-based high-pass filter,” Opt. Lett. 30, 1834-1836 (2005). [CrossRef]
  16. X. Shan and D. M. Spirit, “Novel method to suppress noise in harmonically modelocked erbium fibre lasers,” Electron. Lett. 29, 979-981 (1993). [CrossRef]
  17. J. Schroder, S. Coen, F. Vanholsbeeck, and T. Sylvestre, “Passively mode-locked Raman fiber laser with 100GHz repetition rate,” Opt. Lett. 31, 3489-3491 (2006). [CrossRef]
  18. M. Quiroga-Teixeiro, C. Balslev Clausen, M. P. Sorensen, P. L. Christiansen, and P. A. Andrekson, “Passive mode locking by dissipative four-wave mixing,” J. Opt. Soc. Am. B 15, 1315-1321 (1998). [CrossRef]
  19. T. Sylvestre, S. Coen, O. Deparis, P. Emplit, and M. Haelterman, “Demonstration of passive modelocking through dissipative four-wave mixing in fibre laser,” Electron. Lett. 37, 881-882 (2001). [CrossRef]
  20. M. Nakazawa, K. Suzuki, and H. A. Haus, “The modulational instability laser. I. Experiment,” IEEE J. Quantum Electron. 25, 2036-2044 (1989). [CrossRef]
  21. T. Sylvestre, S. Coen, P. Emplit, and M. Haelterman, “Self-induced modulational instability laser revisited: Normal dispersion and dark-pulse train generation,” Opt. Lett. 27, 482-484 (2002). [CrossRef]
  22. Y.-G. Han, T. V. A. Tran, and S. B. Lee, “Wavelength-spacing tunable multiwavelength erbium-doped fiber laser based on four-wave mixing of dispersion-shifted fiber,” Opt. Lett. 31, 697-699 (2006). [CrossRef]
  23. Redfern Optical Components Pty Ltd, Suite 102, National Innovation Centre, Australian Technology Park, Eveleigh NSW 1430 Sydney Australia, enquiry@redferncomponets.com.
  24. D. Zhao, Y. Lai, X. Shu, L. Zhang, and I. Bennion, “Supermode-noise suppression using a nonlinear Fabry-Perot filter in a harmonically mode-locked fiber ring laser,” Appl. Phys. Lett. 81, 4520-4522 (2002). [CrossRef]
  25. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited