OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 7 — Jul. 1, 2008
  • pp: 1193–1202

Variational method for mode-locked lasers

Brandon G. Bale and J. Nathan Kutz  »View Author Affiliations


JOSA B, Vol. 25, Issue 7, pp. 1193-1202 (2008)
http://dx.doi.org/10.1364/JOSAB.25.001193


View Full Text Article

Enhanced HTML    Acrobat PDF (1044 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A theoretical model is developed for characterizing mode-locking behavior using the variational method. The variational method is applied to three laser-cavity models, and a reduced master mode-locking model is obtained. Characterizing the mode-locking dynamics is the existence of a stable node, stable spiral, or limit cycle in the reduced equations highlighting the regions of a stable mode-locked operation. Fundamental in driving the laser dynamics is the nontrivial phase profiles generated during the mode-locking process. The variational method provides an excellent theoretical framework for optimizing laser performance for a wide range of mode-locking models.

© 2008 Optical Society of America

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.3538) Lasers and laser optics : Lasers, pulsed

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: January 15, 2008
Revised Manuscript: April 20, 2008
Manuscript Accepted: April 27, 2008
Published: June 26, 2008

Citation
Brandon G. Bale and J. Nathan Kutz, "Variational method for mode-locked lasers," J. Opt. Soc. Am. B 25, 1193-1202 (2008)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-25-7-1193


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1173-1185 (2000). [CrossRef]
  2. I. N. Duling and M. L. Dennis, Compact Sources of Ultrafast Lasers (Cambridge U. Press, 1995). [CrossRef]
  3. Springer Handbook of Lasers and Optics, F.Träger, ed. (Springer, 2007). [CrossRef]
  4. K. Smith, R. P. Davey, B. P. Nelson, and E. J. Greer, Fiber and Solid-State Lasers (IEE, 1992).
  5. J. N. Kutz, “Mode-locked soliton lasers,” SIAM Rev. 48, 629-678 (2006). [CrossRef]
  6. K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fiber ring laser,” Electron. Lett. 28, 2226-2228 (1992). [CrossRef]
  7. H. A. Haus, E. P. Ippen, and K. Tamura, “Additive-pulse modelocking in fiber lasers,” IEEE J. Quantum Electron. 30, 200-208 (1994). [CrossRef]
  8. M. E. Fermann, M. J. Andrejco, Y. Silverberg, and M. L. Stock, “Passive mode locking by using nonlinear polarization evolution in a polarizing-maintaining erbium-doped fiber laser,” Opt. Lett. 29, 894-896 (1993). [CrossRef]
  9. D. Y. Tang, W. S. Man, and H. Y. Tam, “Stimulated soliton pulse formation and its mechanism in a passively mode-locked fiber soliton laser,” Opt. Commun. 165, 189-194 (1999). [CrossRef]
  10. I. N. Duling, “Subpicosecond all-fiber erbium laser,” Electron. Lett. 27, 544-545 (1991). [CrossRef]
  11. D. J. Richardson, R. I. Laming, D. N. Payne, V. J. Matsas, and M. W. Phillips, “Self-starting, passively modelocked erbium fiber laser based on the amplifying Sagnac switch,” Electron. Lett. 27, 542-544 (1991). [CrossRef]
  12. M. L. Dennis and I. N. Duling III, “High repetition rate figure eight laser with extracavity feedback,” Electron. Lett. 28, 1894-1896 (1992). [CrossRef]
  13. F. O. Ilday, F. W. Wise, and T. Sosnowski, “High-energy femtosecond stretched-pulse fiber laser with a nonlinear optical loop mirror,” Opt. Lett. 27, 1531-1533 (2002). [CrossRef]
  14. F. X. Kartner and U. Keller, “Stabilization of solitonlike pulses with a slow saturable absorber,” Opt. Lett. 20, 16-18 (1995). [CrossRef]
  15. J. N. Kutz, B. C. Collings, K. Bergman, S. Tsuda, S. Cundiff, W. H. Knox, P. Holmes, and M. Weinstein, “Mode-locking pulse dynamics in a fiber laser with a saturable Bragg reflector,” J. Opt. Soc. Am. B 14, 2681-2690 (1997). [CrossRef]
  16. B. Collings, S. Tsuda, S. Cundiff, J. N. Kutz, M. Koch, W. Knox, and K. Bergman, “Short cavity erbium/ytterbium fiber lasers mode-locked with a saturable Bragg reflector,” IEEE J. Sel. Top. Quantum Electron. 3, 1065-1075 (1998). [CrossRef]
  17. S. Tsuda, W. H. Knox, E. A. DeSouza, W. J. Jan, and J. E. Cunningham, “Low-loss intracavity AlAs/AlGaAs saturable Bragg reflector for femtosecond mode-locking in solid-state lasers,” Opt. Lett. 20, 1406-1408 (1995). [CrossRef]
  18. C. Jirauschek, U. Morgner, and F. X. Kärtner, “Variational analysis of spatio-temporal pulse dynamics in dispersive Kerr media,” J. Opt. Soc. Am. B 19, 1716-1721 (2002). [CrossRef]
  19. C. Jirauschek, F. X. Kärtner, and U. Morgner, “Spatiotemporal Gaussian pulse dynamics in Kerr-lens mode-locked lasers,” J. Opt. Soc. Am. B 20, 1356-1368 (2003). [CrossRef]
  20. C. Antonelli, J. Chen, and F. X. Kärtner, “Intracavity pulse dynamics and stability for passively mode-locked lasers,” Opt. Express 15, 5919-5924 (2007). [CrossRef]
  21. J. N. Kutz, P. Holmes, S. Evangelides, and J. P. Gordon, “Hamiltonian dynamics of dispersion managed breathers,” J. Opt. Soc. Am. B 15, 87-96 (1998). [CrossRef]
  22. A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14, 10095-10100 (2006). [CrossRef]
  23. A. Chong, W. Renninger, and F. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B 25, 140-148 (2008). [CrossRef]
  24. W. Renninger, A. Chong, and F. Wise, “Dissipative solitons in normal-dispersion fiber laser,” Phys. Rev. A 77, 023814 (2008). [CrossRef]
  25. M. C. Cross and P. C. Hohenberg, “Pattern formation outside of equilibrium,” Rev. Mod. Phys. 65, 851-1112 (1993). [CrossRef]
  26. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Structures for additive pulse mode locking,” J. Opt. Soc. Am. B 8, 2068-2076 (1991). [CrossRef]
  27. T. Kapitula and B. Sandstede, “Stability of bright solitary-wave solutions to perturbed nonlinear Schrödinger equations,” Physica D 124, 58-103 (1998). [CrossRef]
  28. T. Kapitula, J. N. Kutz, and B. Sandstede, “Stability of pulses in the master-mode-locking equation,” J. Opt. Soc. Am. B 19, 740-746 (2002). [CrossRef]
  29. T. Kapitula, J. N. Kutz, and B. Sandstede, “The Evans function for nonlocal equations,” Indiana J. Math. 53, 1095-1126 (2004). [CrossRef]
  30. J. Proctor and J. N. Kutz, “Theory and simulation of passive mode-locking with waveguide arrays,” Opt. Lett. 13, 2013-2015 (2005). [CrossRef]
  31. J. Proctor and J. N. Kutz, “Nonlinear mode-coupling for passive mode-locking: application of waveguide arrays, dual-core fibers, and/or fiber arrays,” Opt. Express 13, 8933-8950 (2005). [CrossRef]
  32. J. Proctor and J. N. Kutz, “Averaged models for passive mode-locking using nonlinear mode-coupling,” Math. Comput. Simul. 74, 333-342 (2007). [CrossRef]
  33. J. N. Kutz and B. Sandstede, “Theory of passive harmonic mode-locking using waveguide arrays,” Opt. Express 16, 636-650 (2008). [CrossRef]
  34. G. Whitham, Linear and Nonlinear Waves (Wiley-Interscience, New York, 1974).
  35. D. Anderson, M. Lisak, and A. Berntson, “A variational approach to nonlinear evolution equations in optics,” Pramana, J. Phys. 57, 917-936 (2001). [CrossRef]
  36. B. A. Malomed and D. J. Kaup, “The variational principle for nonlinear waves in dissipative systems,” Physica D 87, 155-159 (1995). [CrossRef]
  37. V. Skarka, V. I. Berezhiani, and R. Miklaszewski, “Spatiotemporal soliton propagation in saturating nonlinear optical media,” Phys. Rev. E 56, 1080-1087 (1997). [CrossRef]
  38. B. A. Malomed, “Variational methods in nonlinear fiber optics and related fields,” Prog. Opt. 43, 69-191 (2002).
  39. B. G. Bale, J. N. Kutz, A. Chong, W. Renninger, and F. Wise, “Spectral filtering for mode-locking in the normal dispersive regime,” Opt. Lett. 33, 941-943 (2008). [CrossRef]
  40. J. N. Elgin, “Perturbations of optical solitons,” Phys. Rev. A 47, 4331-4341 (1993). [CrossRef]
  41. P. Drazin, Nonlinear Systems (Cambridge U. Press, 1992).
  42. J. M. Soto-Crespo and N. Akhmediev, “Composite solitons and two-pulse generation in passively mode-locked lasers modeled by the complex quintic Swift-Hohenberg equation,” Phys. Rev. E 66, 066610 (2002). [CrossRef]
  43. J. M. Soto-Crespo, N. Akhmediev, and K. S. Chang, “Simultaneous existence of multiplicity of stable and unstable solitons in dissipative systems,” Phys. Lett. A 291, 115-123 (2001). [CrossRef]
  44. J. M. Soto-Crespo, N. N. Akhmediev, and V. V. Afanasjev, “Stability of the pulselike solutions of the quintic complex Ginzburg-Landau equation,” J. Opt. Soc. Am. B 13, 1439-1449 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited