OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 7 — Jul. 1, 2008
  • pp: B6–B19

Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities

János Hebling, Ka-Lo Yeh, Matthias C. Hoffmann, Balázs Bartal, and Keith A. Nelson  »View Author Affiliations

JOSA B, Vol. 25, Issue 7, pp. B6-B19 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (622 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The principles and most-recent results of high-power THz generation through optical rectification using a tilted optical pulse front are described. Single-cycle THz pulses of multimicrojoule energies are generated at kHz repetition rates, and average THz power levels exceeding 1 mW can be generated at kHz–MHz repetition rates. Applications in nonlinear THz spectroscopy and THz coherent control are discussed.

© 2008 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(260.3090) Physical optics : Infrared, far

ToC Category:
Ultrafast Optics

Original Manuscript: December 3, 2007
Revised Manuscript: January 28, 2008
Manuscript Accepted: January 30, 2008
Published: April 2, 2008

János Hebling, Ka-Lo Yeh, Matthias C. Hoffmann, Balázs Bartal, and Keith A. Nelson, "Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities," J. Opt. Soc. Am. B 25, B6-B19 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Ferguson and X-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26-33 (2002). [CrossRef]
  2. C. A. Schmuttenmaer, “Exploring dynamics in the far-infrared with terahertz spectroscopy,” Chem. Rev. (Washington, D.C.) 104, 1759-1780 (2004). [CrossRef]
  3. Y. Shen, T. Watanabe, D. A. Arena, C.-C. Kao, J. B. Murphy, T. Y. Tsang, X. J. Wang, and G. L. Carr, “Nonlinear cross-phase modulation with intense single-cycle terahertz pulses,” Phys. Rev. Lett. 99, 043901 (2007). [CrossRef] [PubMed]
  4. D. You, R. R. Jones, P. H. Bucksbaum, and D. R. Dykaar, “Generation of high-power sub-single-cycle 500-fs electromagnetic pulses,” Opt. Lett. 18, 290-292 (1993). [CrossRef] [PubMed]
  5. A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86, 121114 (2005). [CrossRef]
  6. B. B. Hu, X.-C. Zhang, and D. H. Auston, “Free-space radiation from electro-optic crystals,” Appl. Phys. Lett. 56, 506-508 (1990). [CrossRef]
  7. K. Reimann, R. P. Smith, A. M. Weiner, T. Elsaesser, and M. Woerner, “Direct field-resolved detection of terahertz transients with amplitudes of megavolts per centimeter,” Opt. Lett. 28, 471-473 (2003). [CrossRef] [PubMed]
  8. T. Löffler, T. Hahn, M. Thomson, F. Jacob, and H. G. Roskos, “Large-area electro-optic ZnTe terahertz emitters,” Opt. Express 13, 5353-5362 (2005). [CrossRef] [PubMed]
  9. F. Blanchard, L. Razzari, H.-C. Bandulet, G. Sharma, R. Morandotti, J.-C. Kieffer, T. Ozaki, M. Ried, H. F. Tiedje, H. K. Haugen, and F. A. Hegmann, “Generation of 1.5μJ single-cycle terahertz pulses by optical rectification from a large aperture ZnTe crystal,” Opt. Express 15, 13212-13220 (2007). [CrossRef] [PubMed]
  10. A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321-2323 (1996). [CrossRef]
  11. R. M. Koehl and K. A. Nelson, “Terahertz polaritonics: automated spatiotemporal control over propagating lattice waves,” Chem. Phys. 267, 151-159 (2001). [CrossRef]
  12. R. M. Koehl and K. A. Nelson, “Coherent optical control over collective vibrations traveling at lightlike speeds,” J. Chem. Phys. 114, 1443-1446 (2001). [CrossRef]
  13. T. Feurer, J. C. Vaughan, and K. A. Nelson, “Spatiotemporal coherent control of lattice vibrational waves,” Science 299, 374-377 (2003). [CrossRef] [PubMed]
  14. J. Hebling, G. Almási, I. Z. Kozma, and J. Kuhl, “Velocity matching by pulse front tilting for large area THz-pulse generation,” Opt. Express 10, 1161-1166 (2002). [PubMed]
  15. A. G. Stepanov, J. Kuhl, I. Z. Kozma, E. Riedle, G. Almási, and J. Hebling, “Scaling up the energy of THz pulses created by optical rectification,” Opt. Express 13, 5762-5768 (2005). [CrossRef] [PubMed]
  16. R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, 1996), pp. 87-88.
  17. We note that Eq. includes a factor of 4 that was missing in Eq. (5) of . We thank a reviewer for drawing our attention to this problem.
  18. J. Hebling, A. G. Stepanov, G. Almási, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78, 593-599 (2004). [CrossRef]
  19. Q. Wu and X.-C. Zhang, “Ultrafast electro-optic field sensors,” Appl. Phys. Lett. 68, 1604-1606 (1996). [CrossRef]
  20. M. Schall, M. Walther, and P. Uhd Jepsen, “Fundamental and second-order phonon processes in CdTe and ZnTe,” Phys. Rev. B 64, 094301 (2001). [CrossRef]
  21. D. T. F. Marple, “Refractive Index of ZnSe, ZnTe, and CdTe,” J. Appl. Phys. 35, 539-542 (1964). [CrossRef]
  22. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985), pp. 429-444.
  23. D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006-2015 (1990). [CrossRef]
  24. D. F. Nelson and E. H. Turner, “Electro-optic and piezoelectric coefficients and refractive index of gallium phosphide,” J. Appl. Phys. 39, 3337-3343 (1968). [CrossRef]
  25. Ref. , pp. 445-464.
  26. K. Wynne and J. J. Carey, “An integrated description of terahertz generation through optical rectification charge transfer, and current surge,” Opt. Commun. 256, 400-413 (2005). [CrossRef]
  27. V. I. Sokolov and V. K. Subashiev, “Linear electroptical effect in gallium selenide,” Sov. Phys. Solid State 14, 178-183 (1972).
  28. K. L. Vodopyanov and L. A. Kulevskii, “New dispersion relationships for GaSe in the 0.65−18μm spectral region,” Opt. Commun. 118, 375-378 (1995). [CrossRef]
  29. N. Piccioli, R. Le Toullec, M. Mejatty, and M. Balkanski, “Refractive index of GaSe between 0.45 micrometer and 330 micrometers,” Appl. Opt. 16, 1236-1238 (1977). [CrossRef] [PubMed]
  30. M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Optical damage resistance and refractive indices in near-stoichiometric MgO-doped LiNbO3,” Jpn. J. Appl. Phys., Part 1 41, L49-L51 (2002). [CrossRef]
  31. L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97, 123505 (2005). [CrossRef]
  32. M. Schall, H. Helm, and S. R. Keiding, “Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy,” Int. J. Infrared Millim. Waves 20, 595-604 (1999). [CrossRef]
  33. A. Schneider, M. Neis, M. Stillhart, B. Riuz, R. U. A. Khan, and P. Günter, “Generation of terahertz pulses through optical rectification in organic DAST crystals: theory and experiment,” J. Opt. Soc. Am. B 23, 1822-1835 (2006). [CrossRef]
  34. F. Pan, G. Knöpfle, C. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro-optic properties of the organic salt 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate,” Appl. Phys. Lett. 69, 13-15 (1996). [CrossRef]
  35. M. Walther, K. Jensby, S. R. Keiding, H. Takahashi, and H. Ito, “Far-infrared properties of DAST,” Opt. Lett. 25, 911-913 (2000). [CrossRef]
  36. W. D. Johnston, Jr. and I. P. Kaminov, “Contributions to optical nonlinearity in GaAs as determined from Raman scattering efficiencies,” Phys. Rev. 188, 1209-1211 (1969). [CrossRef]
  37. A. Schneider, M. Stillhart, and P. Günter, “High efficiency generation and detection of terahertz pulses using laser pulses at telecommunication wavelengths,” Opt. Express 14, 5376-5384 (2006). [CrossRef] [PubMed]
  38. M. C. Hoffmann, K.-L. Yeh, J. Hebling, and K. A. Nelson, “Efficient terahertz generation by optical rectification at 1035nm,” Opt. Express 15, 11706-11713 (2007). [CrossRef] [PubMed]
  39. D. Redfield and W. J. Burke, “Optical absorption edge of LiNbO3,” J. Appl. Phys. 45, 4566-4571 (1974). [CrossRef]
  40. L. Pálfalvi, J. Hebling, G. Almási, Á. Péter, K. Polgár, K. Lengyel, and R. Szipocs, “Nonlinear refraction and absorption of Mg doped stoichiometric and congruent LiNbO3,” J. Appl. Phys. 95, 902-908 (2004). [CrossRef]
  41. Y.-S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanauskas, “Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 77, 1244-1246 (2000). [CrossRef]
  42. P. A. Tipler, Physics for Scientists and Engineers (W. H. Freeman, 1999).
  43. J. Hebling, “Derivation of the pulse-front-tilt caused by angular dispersion,” Opt. Quantum Electron. 28, 1759-1763 (1996). [CrossRef]
  44. D. H. Auston, “Subpicosecond electro-optic shock waves,” Appl. Phys. Lett. 43, 713-715 (1983). [CrossRef]
  45. D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, “Cherenkov radiation from femtosecond optical pulses in electro-optic media,” Phys. Rev. Lett. 53, 1555-1558 (1984). [CrossRef]
  46. D. A. Kleinman and D. H. Auston, “Theory of electrooptic shock radiation in nonlinear optical media,” IEEE J. Quantum Electron. 20, 964-970 (1984). [CrossRef]
  47. A. G. Stepanov, J. Hebling, and J. Kuhl, “THz generation via optical rectification with ultrashort laser pulse focused to a line,” Appl. Phys. B 81, 23-26 (2005). [CrossRef]
  48. A. G. Stepanov, J. Hebling, and J. Kuhl, “Efficient generation of subpicosecond terahertz radiation by phase-matched optical rectification using ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 83, 3000-3002 (2003).
  49. B. Bartal, I. Z. Kozma, A. G. Stepanov, G. Almási, J. Kuhl, E. Riedle, and J. Hebling, “Toward generation of μJ range sub-ps THz pulses by optical rectification,” Appl. Phys. B 86, 419-423 (2007). [CrossRef]
  50. K.-L. Yeh, J. Hebling, M. C. Hoffmann, and K. A. Nelson, “Generation of high average power 1kHz shaped THz pulses via optical rectification,” Opt. Commun. (to be published).
  51. K.-L. Yeh, J. Hebling, M. C. Hoffmann, and K. A. Nelson, “Generation of 10μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90, 171121 (2007). [CrossRef]
  52. O. E. Martinez, “Pulse distortions in tilted pulse schemes for ultrashort pulses,” Opt. Commun. 59, 229-232 (1986). [CrossRef]
  53. I. Z. Kozma, G. Almási, and J. Hebling, “Geometrical optical modeling of femtosecond setups having angular dispersion,” Appl. Phys. B 76, 257-261 (2003). [CrossRef]
  54. D. W. Ward, E. R. Statz, K. A. Nelson, R. M. Roth, and R. M. Osgood, “Terahertz wave generation and propagation in thin-film lithium niobate produced by crystal ion slicing,” Appl. Phys. Lett. 86, 022908 (2005). [CrossRef]
  55. D. H. Auston and M. C. Nuss, “Electrooptical generation and detection of femtosecond electrical transients,” IEEE J. Quantum Electron. 24, 184-196 (1988). [CrossRef]
  56. G. D. Boyd and M. A. Pollack, “Microwave nonlinearities in anisotropic dielectrics and their relation to optical and electro-optical nonlinearities,” Phys. Rev. B 7, 5345-5359 (1973). [CrossRef]
  57. A. Leitenstorfer, S. Hunsche, J. Shah, and M. C. Nuss, “Detectors and sources for ultrabroadband electro-optic sampling: experiment and theory,” Appl. Phys. Lett. 74, 1516-1518 (1999). [CrossRef]
  58. D. F. Parsons and P. D. Coleman, “Far infrared optical constants of gallium phosphide,” Appl. Opt. 10, 1683-1685 (1971). [CrossRef]
  59. K. Kawase, J.-i. Shikata, H. Minamide, K. Imai, and H. Ito, “Arrayed silicon prism coupler for a terahertz-wave parametric oscillator,” Appl. Opt. 40, 1423-1426 (2001). [CrossRef]
  60. M. Theuer, G. Torosyan, C. Rau, R. Beigang, K. Maki, C. Otani, and K. Kawase, “Efficient generation of Cherenkov-type terahertz radiation from a lithium niobate crystal with a silicon prism output coupler,” Appl. Phys. Lett. 88, 071122 (2006). [CrossRef]
  61. Q. Wu and X.-C. Zhang, “7 terahertz broadband GaP electro-optic sensor,” Appl. Phys. Lett. 70, 1784-1786 (1997). [CrossRef]
  62. G. Chang, C. J. Divin, J. Yang, M. A. Musheinish, S. L. Williamson, A. Galvanauskas, and T. B. Norris, “GaP waveguide emitters for high power broadband THz generation pumped by Yb-doped fiber lasers,” Opt. Express 15, 16308-16314 (2007). [CrossRef] [PubMed]
  63. G. Imeshev, M. E. Fermann, K. L. Vodopyanov, M. M. Fejer, X. Yu, J. J. Harris, D. Bliss, and D. Weyburne, “High-power source of THz radiation based on orientation-patterned GaAs pumped by a fiber laser,” Opt. Express 14, 4439-4444 (2006). [CrossRef] [PubMed]
  64. N. S. Stoyanov, T. Feurer, D. W. Ward, E. R. Statz, and K. A. Nelson, “Direct visualization of a polariton resonator in the THz regime,” Opt. Express 12, 2387-2396 (2004). [CrossRef] [PubMed]
  65. D. W. Ward, J. D. Beers, T. Feurer, E. R. Statz, N. Stoyanov, and K. A. Nelson, “Coherent control of phonon-polaritons in a terahertz resonator fabricated with femtosecond laser machining,” Opt. Lett. 29, 2671-2673 (2004). [CrossRef] [PubMed]
  66. D. W. Ward, E. R. Statz, J. D. Beers, T. Feurer, J. D. Joannopoulos, R. M. Roth, R. M. Osgood, K. J. Webb, and K. A. Nelson, “Polaritonics in complex structures: confinement, bandgap materials, and coherent control,” in Ultrafast Phenomena XIV, T.Kobayashi, T.Okada, T.Kobayashi, K.A.Nelson, and S.De Silvestri, eds. (Springer-Verlag, 2005), pp. 298-300. [CrossRef]
  67. J. Ahn, A. V. Efimov, R. D. Averitt, and A. J. Taylor, “Terahertz waveform synthesis via optical rectification of shaped ultrafast laser pulses,” Opt. Express 11, 2486-2496 (2003). [CrossRef] [PubMed]
  68. T. F. Crimmins, N. S. Stoyanov, and K. A. Nelson, “Heterodyned impulsive stimulated Raman scattering of phonon-polaritons in LiTaO3 and LiNbO3,” J. Chem. Phys. 117, 2882-2896 (2002). [CrossRef]
  69. A. G. Stepanov, J. Hebling, and J. Kuhl, “Generation, tuning, and shaping of narrow-band, picosecond THz pulses by two-beam excitation,” Opt. Express 12, 4650-4658 (2004). [CrossRef] [PubMed]
  70. Y. Liu, S.-G. Park, and A. M. Weiner, “Terahertz waveform synthesis via optical pulse shaping,” IEEE J. Sel. Top. Quantum Electron. 2, 709-719 (1996). [CrossRef]
  71. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929-1969 (2000). [CrossRef]
  72. J. Ahn, D. N. Hutchinson, C. Rangan, and P. H. Bucksbaum, “Quantum phase retrieval of a Rydberg wave packet using a half-cycle pulse,” Phys. Rev. Lett. 86, 1179-1182 (2001). [CrossRef] [PubMed]
  73. B. E. Cole, J. B. Williams, B. T. King, M. S. Sherwin, and C. R. Stanley, “Coherent manipulation of semiconductor quantum bits with terahertz radiation,” Nature 410, 60-63 (2001). [CrossRef] [PubMed]
  74. R. De Salvo, A. A. Said, D. J. Hagan, E. W. van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324-1333 (1996). [CrossRef]
  75. T. Hornung, K. L. Yeh, and K. A. Nelson, in Ultrafast Phenomena XV, P.Corkum, D.Jonas, R.J. D.Miller, A.M.Weiner, eds. (Springer-Verlag, 2007), pp. 772-774. [CrossRef]
  76. J. Hebling, K.-L. Yeh, M. C. Hoffmann, and K. A. Nelson, “High power THz generation, THz nonlinear optics, and THz nonlinear spectroscopy,” IEEE J. Sel. Top. Quantum Electron. (to be published).
  77. M. Khalil, N. Demirdoven, and A. Tokmakoff, “Coherent 2D IR spectroscopy: molecular structure and dynamics in solution,” J. Phys. Chem. A 107, 5258-5279 (2003). [CrossRef]
  78. M. Rini, R. Tobey, J. Itatani, Y. Tomioka, Y. Tokura, R. W. Schoenlein, and A. Cavalleri, “Control of the electronic phase of a manganite by mode-selective vibrational excitation,” Nature 449, 72-74 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited