OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 8 — Aug. 1, 2008
  • pp: 1242–1253

Measurement of the temporal coherence in broadband sources using the radio-frequency transfer function of a dispersive system

Carlos R. Fernández-Pousa, Haroldo Maestre, Adrián J. Torregrosa, and Juan Capmany  »View Author Affiliations

JOSA B, Vol. 25, Issue 8, pp. 1242-1253 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (751 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a noninterferometric method for direct and complete characterization of the degree of first-order temporal coherence γ ( τ ) of low-coherence broadband sources both in amplitude and phase. The method is based on measuring the radio-frequency transfer function H RF ( f ) of amplitude-modulated partially coherent guided waves in a system with first-order dispersion. Experimental data for sources based on amplitude-modulated amplified spontaneous emission in the 1.55 μ m band having spectral widths up to 30 nm and subsequently dispersed in a 12.77 km standard single-mode fiber coil provide complete characterization of the temporal coherence with 6.5 fs resolution and a dynamic range exceeding 20 dB .

© 2008 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(060.2380) Fiber optics and optical communications : Fiber optics sources and detectors
(060.4080) Fiber optics and optical communications : Modulation
(260.2030) Physical optics : Dispersion
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Coherence and Statistical Optics

Original Manuscript: February 8, 2008
Revised Manuscript: May 16, 2008
Manuscript Accepted: June 3, 2008
Published: July 7, 2008

Carlos R. Fernández-Pousa, Haroldo Maestre, Adrián J. Torregrosa, and Juan Capmany, "Measurement of the temporal coherence in broadband sources using the radio-frequency transfer function of a dispersive system," J. Opt. Soc. Am. B 25, 1242-1253 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge Univ. Press, 1995).
  2. J. M. Schmitt, “Optical Coherence Tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205-1215 (1999). [CrossRef]
  3. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical Coherence Tomography--principles and applications,” Rep. Prog. Phys. 66, 239-303 (2003). [CrossRef]
  4. P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, and H. J. Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12, 550-567 (1994). [CrossRef]
  5. D. Derickson, Fiber Optic Test and Measurement (Prentice Hall, 1998).
  6. Y. Teramura, K. Suzuki, M. Suzuki, and F. Kannari, “Low-coherence interferometry with synthesis of coherence function,” Appl. Opt. 38, 5974-5980 (1999). [CrossRef]
  7. Y. Zhang, M. Sato, and N. Tanno, “Resolution improvement in optical coherence tomography by optimal synthesis of light-emitting diodes,” Opt. Lett. 26, 205-207 (2001). [CrossRef]
  8. Y. J. Rao, Y. N. Ning, and D. A. Jackson, “Synthesized source for white-light sensing systems,” Opt. Lett. 18, 462-464 (1993). [CrossRef] [PubMed]
  9. V. Binjrajka, C.-C. Chang, A. W. R. Emanuel, D. E. Leaird, and A. M. Weiner, “Pulse shaping of incoherent light by use of a liquid-crystal modulator array,” Opt. Lett. 21, 1756-1758 (1996). [CrossRef] [PubMed]
  10. J. H. Lee, C. H. Kim, Y.-G. Han, and S. B. Lee, “Broadband, high-power, erbium fiber ASE-based CW supercontinuum source for spectrum-sliced WDM PON applications,” Electron. Lett. 42, 549-550 (2006). [CrossRef]
  11. D. D. Sampson and W. T. Holloway, “100 mW spectrally uniform broadband ASE source for spectrum-sliced WDM systems,” Electron. Lett. 30, 1611-1612 (1994). [CrossRef]
  12. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145-195 (2002). [CrossRef]
  13. H. Gouraud, P. Di Bin, L. Billonnet, P. Faugeras, and B. Jarry, “Optical fiber dispersion properties management for optimized bandpass microwave photonics slicing filter applications,” Opt. Commun. 265, 506-512 (2006). [CrossRef]
  14. J. Mora, B. Ortega, A. Díez, J. L. Cruz, M. V. Andrés, José Capmany, and D. Pastor, “Photonic microwave tunable single-bandpass filter based on a Mach-Zehnder interferometer,” J. Lightwave Technol. 24, 2500-2509 (2006). [CrossRef]
  15. J. Mora, José Capmany, and L. R. Chen, “Tunable and reconfigurable single bandpass photonic microwave filter using a high-birefringence Sagnac loop and DWDM channel selector,” in Proc. of the 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society (LEOS, 2007) (IEEE, 2007), pp. 192-193. [CrossRef]
  16. C. Dorrer, “Temporal van Cittert-Zernike theorem and its application to the measurement of chromatic dispersion,” J. Opt. Soc. Am. B 21, 1417-1423 (2004). [CrossRef]
  17. C. R. Fernández-Pousa, H. Maestre, A. J. Torregrosa, and Juan Capmany, “Complete determination of the first-order degree of coherence of amplified spontaneous emission sources with femtosecond resolution,” presented at the Conference on Lasers and Electro-Optics and the Quantum Electronics and Laser Science Conference (CLEO/QELS 08), San Jose, Calif., May 4-9, 2008, paper CMU5.
  18. José Capmany, A. Martínez, B. Ortega, and D. Pastor, “Transfer function of analog fiber-optics systems driven by Fabry-Perot lasers,” J. Opt. Soc. Am. B 22, 2099-2106 (2005). [CrossRef]
  19. B. E. A. Saleh and M. I. Irshid, “Collett-Wolf equivalence theorem and propagation of a pulse in a single-mode optical fiber,” Opt. Lett. 7, 342-343 (1982). [CrossRef] [PubMed]
  20. L. Chantada, C. R. Fernández-Pousa, and C. Gómez-Reino, “Theory of the partially-coherent temporal Talbot effect,” Opt. Commun. 266, 393-398 (2006). [CrossRef]
  21. H. Schmuck, “Comparison of optical millimeter-wave system concept with regard to chromatic dispersion,” Electron. Lett. 31, 1848-1849 (1995). [CrossRef]
  22. A. Yariv and P. Yeh, Photonics, 6th ed. (Oxford Univ. Press, 2007).
  23. J. P. Gordon and H. Kogelnik, “PMD fundamentals: Polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. U.S.A. 97, 4541-4550 (2000). [CrossRef] [PubMed]
  24. P. Ciprut, B. Gisin, N. Gisin, R. Passy, J. P. Von der Weid, F. Prieto, and C. W. Zimmer, “Second-order polarization mode dispersion: impact on analog and digital transmissions,” J. Lightwave Technol. 26, 757-771 (1998).
  25. B. Vidal, J. L. Corral, and J. Martí, “All-optical WDM microwave filter with negative coefficients,” IEEE Photon. Technol. Lett. 17, 666-668 (2005). [CrossRef]
  26. P. F. Wysocki, M. J. F. Digonnet, and B. Y. Kim, “Spectral characteristics of high-power 1.5 mm broad-band superluminiscent fiber sources,” IEEE Photon. Technol. Lett. 2, 178-180 (1990). [CrossRef]
  27. C. R. Fernández-Pousa, H. Maestre, A. J. Torregrosa, and Juan Capmany are preparing a paper to be called “Hilbert and Blaschke phases in the coherence function of stationary broadband light.”
  28. A. V. Oppenheim and R. W. Schafer, Discrete-time Signal Processing (Prentice-Hall, 1989).
  29. D. J. Bone, “Fourier fringe analysis: the two-dimensional phase unwrapping problem,” Appl. Opt. 30, 3627-3632 (1991). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited