OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 8 — Aug. 1, 2008
  • pp: 1254–1260

Nonlinear tunneling of optical similaritons in nonlinear waveguides

Juanfen Wang, Lu Li, and Suotang Jia  »View Author Affiliations


JOSA B, Vol. 25, Issue 8, pp. 1254-1260 (2008)
http://dx.doi.org/10.1364/JOSAB.25.001254


View Full Text Article

Enhanced HTML    Acrobat PDF (2393 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We consider the nonlinear Schrödinger equation with variable coefficients that describes beam propagation in inhomogeneous graded-index waveguides. By using the direct transformation of variables and functions, we present the exact general bright and dark spatial self-similar solutions. As an application, we discuss the nonlinear tunneling of optical similaritons. The results show that under an integrable condition, the optical waves can similarly pass through the nonlinear barrier or well, and the interaction between the neighboring waves is elastic collision. Under a nonintegrable condition, when they pass through the nonlinear barrier, the optical beams can effectively be compressed for the relatively small value of height of the nonlinear barrier. However, the beam splits into some filaments when the height of the nonlinear barrier is large enough.

© 2008 Optical Society of America

OCIS Codes
(190.4400) Nonlinear optics : Nonlinear optics, materials
(230.7370) Optical devices : Waveguides
(230.7400) Optical devices : Waveguides, slab
(190.6135) Nonlinear optics : Spatial solitons

ToC Category:
Nonlinear Optics

History
Original Manuscript: March 18, 2008
Revised Manuscript: May 13, 2008
Manuscript Accepted: May 16, 2008
Published: July 11, 2008

Citation
Juanfen Wang, Lu Li, and Suotang Jia, "Nonlinear tunneling of optical similaritons in nonlinear waveguides," J. Opt. Soc. Am. B 25, 1254-1260 (2008)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-25-8-1254


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. I. Barenblatt, Scaling, Self-Similarity and Intermediate Asymptotics (Cambridge U. Press, 1996).
  2. D. Anderson, M. Desaix, M. Karlsson, M. Lisak, and M. L. Quiroga-Teixeiro, “Wave-breaking-free pulses in nonlinear-optical fibers,” J. Opt. Soc. Am. B 10, 1185-1190 (1993). [CrossRef]
  3. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010-6013 (2000). [CrossRef] [PubMed]
  4. V. I. Kruglov, A. C. Peacock, J. D. Harvey, and J. M. Dudley, “Self-similar propagation of parabolic pulses in normal-dispersion fiber amplifiers,” J. Opt. Soc. Am. B 19, 461-469 (2002). [CrossRef]
  5. F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004). [CrossRef] [PubMed]
  6. V. N. Serkin and A. Hasegawa, “Novel soliton solutions of the nonlinear Schrödinger equation model,” Phys. Rev. Lett. 85, 4502-4505 (2000). [CrossRef] [PubMed]
  7. V. N. Serkin and A. Hasegawa, “Exactly integrable nonlinear Schrödinger equation models with varying dispersion, nonlinearity and gain: Application for soliton dispersion managements,” IEEE J. Sel. Top. Quantum Electron. 8, 418-431 (2002). [CrossRef]
  8. V. N. Serkin, M. Matsumoto, and T. L. Belyaeva, “Bright and dark solitary nonlinear Bloch waves in dispersion managed fiber systems and soliton lasers,” Opt. Commun. 196, 159-171 (2001). [CrossRef]
  9. V. N. Serkin, A. Hasegawa, and T. L. Belyaeva, “Nonautonomous solitons in external pontentials,” Phys. Rev. Lett. 98, 074102 (2007). [CrossRef] [PubMed]
  10. V. I. Kruglov, A. C. Peacock, and J. D. Harvey, “Exact self-similar solutions of the generalized nonlinear Schrödinger equation with distributed coefficients,” Phys. Rev. Lett. 90, 113902 (2003). [CrossRef] [PubMed]
  11. V. I. Kruglov, A. C. Peacock, and J. D. Harvey, “Exact solutions of the generalized nonlinear-Schrödinger equation with distributed coefficients,” Phys. Rev. E 71, 056619 (2005). [CrossRef]
  12. L. Y. Wang, L. Li, Z. H. Li, G. S. Zhou, and D. Mihalache, “Generation, compression, and propagation of pulse trains in the nonlinear Schrödinger equation with distributed coefficients,” Phys. Rev. E 72, 036614 (2005). [CrossRef]
  13. J. F. Wang, L. Li, Z. H. Li, G. S. Zhou, D. Mihalache, and B. A. Malomed, “Generation, compression and propagation of pulse trains under higher-order effects,” Opt. Commun. 263, 328-336 (2006). [CrossRef]
  14. H. F. Zhang, J. F. Wang, L. Li, S. T. Jia, and G. S. Zhou, “Generation and propagation of subpicosecond pulse train,” Chin. Phys. 16, 449-455 (2007). [CrossRef]
  15. S. A. Ponomarenko and G. P. Agrawal, “Interactions of chirped and chirp-free similaritons in optical fiber amplifiers,” Opt. Express 15, 2963-2973 (2007). [CrossRef] [PubMed]
  16. L. Wu, J. F. Zhang, L. Li, Q. Tian, and K. Porsezian, “Similaritons in nonlinear optical systems,” Opt. Express 16, 6352-6360 (2008). [CrossRef] [PubMed]
  17. L. Wu, J. F. Zhang, and L. Li, “Modulational instability and bright solitary wave solution for Bose-Einstein condensates with time-dependent scattering length and harmonic potential,” New J. Phys. 9, 69-69 (2007). [CrossRef]
  18. S. A. Ponomarenko and G. P. Agrawal, “Do solitonlike self-similar waves exist in nonlinear optical media?” Phys. Rev. Lett. 97, 013901 (2006). [CrossRef] [PubMed]
  19. S. A. Ponomarenko and G. P. Agrawal, “Optical similaritons in nonlinear waveguides,” Opt. Lett. 32, 1659-1661 (2007). [CrossRef] [PubMed]
  20. J. Manassah, “Collapse of the two-dimensional spatial soliton in a parabolic-index material,” Opt. Lett. 17, 1259-1261 (1992). [CrossRef] [PubMed]
  21. H. M. Li and F. Q. Song, “Novel exact self-similar solitary waves in graded-index media with Kerr nonlinearity,” Opt. Commun. 277, 174-180 (2007). [CrossRef]
  22. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  23. V. N. Serkin and T. L. Belyaeva, “High-energy optical Schrödinger solitons,” JETP Lett. 74, 573-577 (2001). [CrossRef]
  24. G. Y. Yang, R. Y. Hao, L. Li, Z. H. Li, and G. S. Zhou, “Cascade compression induced by nonlinear barriers in propagation of optical solitons,” Opt. Commun. 260, 282-287 (2006). [CrossRef]
  25. A. C. Newell, “Nonlinear tunneling,” J. Math. Phys. 19, 1126-1133 (1978). [CrossRef]
  26. D. Anderson, M. Lisak, B. Malomed, and M. Quiroga-Teixeiro, “Tunneling of an optical soliton through a fiber junction,” J. Opt. Soc. Am. B 11, 2380-2384 (1994). [CrossRef]
  27. V. N. Serkin, V. M. Chapela, J. Persino, and T. L. Belyaeva, “Nonlinear tunneling of temporal and spatial optical solitons through organic thin films and polymeric waveguides,” Opt. Commun. 192, 237-244 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited