OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 8 — Aug. 1, 2008
  • pp: 1261–1264

Optically induced voltage pulses by resonant excitation of a passive GaAs photoconductive switch

Gabriel C. Loata, Mark Bieler, Günter Hein, and Uwe Siegner  »View Author Affiliations


JOSA B, Vol. 25, Issue 8, pp. 1261-1264 (2008)
http://dx.doi.org/10.1364/JOSAB.25.001261


View Full Text Article

Enhanced HTML    Acrobat PDF (390 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have investigated the all-optical generation of ultrashort voltage pulses that are launched by resonant excitation of a passive GaAs photoconductive switch with no electric bias field applied. Due to a specially designed geometry, we can distinguish between electrical transients generated in the Schottky field region of the metal/GaAs contact and shift currents resulting from nonlinear optical effects in the GaAs material. The shift current contribution is smaller than the Schottky field contribution but possesses a higher bandwidth with frequency components exceeding 1 THz . For small bias fields, the contribution of all-optically-generated currents to the overall voltage signal may be significant and needs to be accounted for when modeling photoconductive switches.

© 2008 Optical Society of America

OCIS Codes
(230.0250) Optical devices : Optoelectronics
(320.7080) Ultrafast optics : Ultrafast devices

ToC Category:
Ultrafast Optics

History
Original Manuscript: April 4, 2008
Revised Manuscript: May 30, 2008
Manuscript Accepted: June 1, 2008
Published: July 15, 2008

Citation
Gabriel C. Loata, Mark Bieler, Günter Hein, and Uwe Siegner, "Optically induced voltage pulses by resonant excitation of a passive GaAs photoconductive switch," J. Opt. Soc. Am. B 25, 1261-1264 (2008)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-25-8-1261


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Bieler, S. Seitz, M. Spitzer, K. Pierz, G. Hein, U. Siegner, M. A. Basu, A. J. A. Smith, and M. R. Harper, “Rise-time calibration of 50 GHz sampling oscilloscopes: intercomparison between PTB and NPL,” IEEE Trans. Instrum. Meas. 56, 266-270 (2007). [CrossRef]
  2. J. A. Valdmanis and G. A. Mourou, “Subpicosecond electrooptic sampling: principles and applications,” IEEE J. Quantum Electron. 22, 69-78 (1986). [CrossRef]
  3. R. Sprik, I. N. Dulling III, C.-C. Chi, and D. Grischkowsky, “Far infrared spectroscopy with subpicosecond electrical pulses on transmission lines,” Appl. Phys. Lett. 51, 548-550 (1987). [CrossRef]
  4. U. D. Keil and D. R. Dykaar, “Ultrafast pulse generation in photoconductive switches,” IEEE J. Quantum Electron. 32, 1664-1671 (1996). [CrossRef]
  5. S. Alexandrou, C. C. Wang, R. Sobolewsky, and T. Y. Hsiang, “Generation of subpicosecond electrical pulses by nonuniform illumination of GaAs transmission-line gaps,” IEEE J. Quantum Electron. 30, 1332-1338 (1994). [CrossRef]
  6. P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” J. Opt. Soc. Am. B 13, 2424-2436 (1996). [CrossRef]
  7. E. Castro-Camus, J. Lloyd-Hughes, and M. B. Johnston, “Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches,” Phys. Rev. B 71, 195301 (2005). [CrossRef]
  8. S. E. Ralph and D. Grischkowsky, “Trap-enhanced electric fields in semi-insulators: the role of electrical and optical carrier injection,” Appl. Phys. Lett. 59, 1972-1974 (1991). [CrossRef]
  9. M. Bieler, G. Hein, K. Pierz, U. Siegner, and M. Koch, “Spatial pattern formation of optically excited carriers in photoconductive switches,” Appl. Phys. Lett. 77, 1002-1004 (2000). [CrossRef]
  10. A. Nahata and T. F. Heinz, “Generation of subpicosecond electrical pulses by optical rectification,” Opt. Lett. 23, 867-869 (1998). [CrossRef]
  11. S. Graf, H. Sigg, and W. Bächtold, “High-frequency electrical generation using optical rectification in bulk GaAs,” Appl. Phys. Lett. 76, 2647-2649 (2000). [CrossRef]
  12. J. E. Sipe and A. I. Shkrebtii, “Second-order optical response in semiconductors,” Phys. Rev. B 61, 5337-5352 (2000). [CrossRef]
  13. M. Bieler, K. Pierz, and U. Siegner, “Simultaneous generation of shift and injection currents in (110)-grown GaAs/AlGaAs quantum wells,” J. Appl. Phys. 100, 083710 (2006). [CrossRef]
  14. F. Nastos and J. E. Sipe, “Optical rectification and shift currents in GaAs and GaP response: below and above the band gap,” Phys. Rev. B 74, 035201 (2006). [CrossRef]
  15. Y. Jin, X. F. Ma, G. A. Wagoner, M. Alexander, and X.-C. Zhang, “Anomalous optically generated THz beams from metal/GaAs interfaces,” Appl. Phys. Lett. 65, 682 (1994). [CrossRef]
  16. A weak signature of a voltage pulse generated in a PC switch that is not biased has been observed in Ref. . Yet the origin of this signal has not been investigated at all.
  17. T. S. Clement, P. D. Hale, D. F. Williams, C. M. Wang, A. D. Dienstfrey, and D. A. Keenan, “Calibration of sampling oscilloscopes with high-speed photodiodes,” IEEE Trans. Microwave Theory Tech. 54, 3173-3181 (2006). [CrossRef]
  18. S. M. Sze, Physics of Semiconductor Devices (John Wiley & Sons, 1981).
  19. P. G. Huggard, C. J. Shaw, J. A. Cluff, and S. R. Andrews, “Polarization-dependent efficiency of photoconducting THz transmitters and receivers,” Appl. Phys. Lett. 72, 2069-2071 (1998). [CrossRef]
  20. M. Bieler, K. Pierz, U. Siegner, and P. Dawson, “Quantum interference currents by excitation of heavy- and light-hole excitons in GaAs/AlGaAs quantum wells,” Phys. Rev. B 73, 241312(R) (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited