OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 8 — Aug. 1, 2008
  • pp: 1265–1269

Self-chaotization in coupled optical waveguides

Ramaz Khomeriki, Archil Ugulava, and Levan Chotorlishvili  »View Author Affiliations

JOSA B, Vol. 25, Issue 8, pp. 1265-1269 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (230 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We consider theoretically two coupled optical waveguides' with a varying barrier height along the waveguides direction. The barrier could be constructed by the elongated island with a reduced refractive index (that acts as a potential barrier), such that in the middle region it splits a waveguide into two weakly coupled parts. It is predicted by numerical simulations and analytical consideration that the presence of some imperfection of the system parameters can cause splitting of the injected laser beam and one will observe two intensity maximums at the output, while for small imperfections the input and output beam intensity distributions will be the same. The switching between two regimes could be achieved by changing the spectral width of the beam or the refractive index of the island. This nontrivial effect is explained by the possibility of transitions between the different eigenstates of the system in the region of large potential barrier heights. The mentioned effect could be used for all-optical readdressing and filtering purposes.

© 2008 Optical Society of America

OCIS Codes
(030.6600) Coherence and statistical optics : Statistical optics
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Coherence and Statistical Optics

Original Manuscript: December 14, 2007
Revised Manuscript: June 9, 2008
Manuscript Accepted: June 11, 2008
Published: July 16, 2008

Ramaz Khomeriki, Archil Ugulava, and Levan Chotorlishvili, "Self-chaotization in coupled optical waveguides," J. Opt. Soc. Am. B 25, 1265-1269 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Yariv, Optical Electronics, 4th ed. (Saunders College, 1991).
  2. Y. S. Kivshar and G. P. Agrawall, Optical Solitons: From Fibers to Photonic Crystals (Academic, 2003).
  3. T. Pertsch, T. Zentgraf, U. Peschel, A. Brauer, and F. Lederer, “Anomalous refraction and diffraction in discrete optical systems,” Phys. Rev. Lett. 88, 093901 (2002). [CrossRef] [PubMed]
  4. D. N. Christodoulides and R. I. Joseph, “Discrete self-focusing in nonlinear arrays of coupled waveguides,” Opt. Lett. 13, 794-796 (1988). [CrossRef] [PubMed]
  5. H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, “Discrete spatial optical solitons in waveguide arrays,” Phys. Rev. Lett. 81, 3383-3386 (1998). [CrossRef]
  6. D. Mandelik, H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Band-gap structure of waveguide arrays and excitation of Floquet-Bloch solitons,” Phys. Rev. Lett. 90, 053902 (2003). [CrossRef] [PubMed]
  7. D. Mandelik, R. Morandotti, J. S. Aitchison, and Y. Silberberg, “Gap solitons in waveguide arrays,” Phys. Rev. Lett. 92, 093904 (2004). [CrossRef] [PubMed]
  8. A. A. Sukhorukov, D. Neshev, W. Krolikowski, and Y. S. Kivshar, “Nonlinear Bloch-wave interaction and Bragg scattering in optically induced lattices,” Phys. Rev. Lett. 92, 093901 (2004). [CrossRef] [PubMed]
  9. R. Khomeriki, “Nonlinear band gap transmission in optical waveguide arrays,” Phys. Rev. Lett. 92, 063905 (2004). [CrossRef] [PubMed]
  10. R. S. Tasgal, Y. B. Band, and B. A. Malomed, “Gap solitons in a medium with third-harmonic generation,” Phys. Rev. E 72, 016624 (2005). [CrossRef]
  11. D. E. Pelinovsky, A. A. Sukhorukov, and Yu. S. Kivshar, “Bifurcations and stability of gap solitons in periodic potentials,” Phys. Rev. E 70, 036618 (2004). [CrossRef]
  12. R. Khomeriki and J. Leon, “Light detectors bistable nonlinear waveguide arrays,” Phys. Rev. Lett. 94, 243902 (2005). [CrossRef]
  13. R. Khomeriki and S. Ruffo, “Nonadiabatic Landau-Zener tunneling in waveguide arrays with a step in the refractive index,” Phys. Rev. Lett. 94, 113904 (2005). [CrossRef] [PubMed]
  14. S. Longhi, “Landau-Zener dynamics in a curved optical directional coupler,” Acoust. Hologr. 7, L9-L12 (2005).
  15. A. Fratalocchi, G. Assanto, K. A. Brzdakiewicz, and M. A. Karpierz, “Optically induced Zener tunneling in one-dimensional lattices,” Opt. Lett. 31, 790-792 (2006). [CrossRef] [PubMed]
  16. A. S. Desyatnikov, Y. S. Kivshar, V. S. Shchesnovich, S. B. Cavalcanti, and J. M. Hickmann, “Resonant Zener tunneling in two-dimensional periodic photonic lattices,” Opt. Lett. 32, 325-327 (2007). [CrossRef] [PubMed]
  17. R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, “Experimental observation of linear and nonlinear optical Bloch oscillations,” Phys. Rev. Lett. 83, 4756-4759 (1999). [CrossRef]
  18. T. Pertsch, P. Dannberg, W. Elflein, A. Braüer, and F. Lederer, “Optical Bloch oscillations in temperature tuned waveguide arrays,” Phys. Rev. Lett. 83, 4752-4755 (1999). [CrossRef]
  19. T. Schwartz, G. Bartal, Sh. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446, 52-55 (2007). [CrossRef] [PubMed]
  20. S. M. Jensen, “The nonlinear coherent coupler,” IEEE J. Quantum Electron. 18, 1568-1571 (1982). [CrossRef]
  21. R. Khomeriki, J. Leon, and S. Ruffo, “Coexistence of Josephson oscillations and a novel self-trapping regime in optical waveguide arrays,” Phys. Rev. Lett. 97, 143902 (2006). [CrossRef] [PubMed]
  22. A. Pasquazi, A. Alberucci, M. Peccianti, and G. Assanto, “Signal processing by opto-optical interactions between self-localized and free propagating beams in liquid crystals,” Appl. Phys. Lett. 87, 261104 (2005). [CrossRef]
  23. L. Davidovich, “Sub-Poissonian processes in quantum optics,” Rev. Mod. Phys. 68, 127-173 (1996). [CrossRef]
  24. M. J. Ablowitz and Z. H. Musslimani, “Discrete spatial solitons in a diffraction-managed nonlinear waveguide array: a unified approach,” Physica D 184, 276303 (2003). [CrossRef]
  25. A. Smerzi, S. Fantoni, S. Giovanazzi, and S. R. Shenoy, “Quantum coherent atomic tunneling between two trapped Bose-Einstein condensates,” Phys. Rev. Lett. 79, 4950-4953 (1997). [CrossRef]
  26. S. Raghavan, A. Smerzi, S. Fantoni, and S. R. Shenoy, “Coherent oscillations between two weakly coupled Bose-Einstein condensates: Josephson effects, oscillations, and macroscopic quantum self-trapping,” Phys. Rev. A 59, 620-633 (1999). [CrossRef]
  27. T. Kapitula and P. G. Kevrekidis, “Bose-Einstein condensates in the presence of a magnetic trap and optical lattice: two-mode approximation,” Nonlinearity 18, 2491-2512 (2005). [CrossRef]
  28. P. G. Kevrekidis, Zhigang Chen, B. A. Malomed, D. J. Frantzeskakis, and M. I. Weinstein, “Spontaneous symmetry breaking in photonic lattices: theory and experiment,” Phys. Lett. A 340, 275-280 (2005). [CrossRef]
  29. M. Albiez, R. Gati, J. Folling, S. Hunsmann, M. Cristiani, and M. K. Oberthaler, “Direct observation of tunneling and nonlinear self-trapping in a single bosonic Josephson Junction,” Phys. Rev. Lett. 95, 010402 (2005). [CrossRef] [PubMed]
  30. A. Ugulava, L. Chotorlishvili, and K. Nickoladze, “Quantum-mechanical research on nonlinear resonance and the problem of quantum chaos,” Phys. Rev. E 70, 026219 (2004). [CrossRef]
  31. A. Ugulava, L. Chotorlishvili, and K. Nickoladze, “Overlapping of nonlinear resonances and the problem of quantum chaos,” Phys. Rev. E 68, 026216 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited