OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 8 — Aug. 1, 2008
  • pp: 1270–1276

Solution of photonic band diagrams by a plane-wave-based transfer-matrix method in combination with an interpolation method

Ming Che and Zhi-Yuan Li  »View Author Affiliations

JOSA B, Vol. 25, Issue 8, pp. 1270-1276 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (300 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have developed a plane-wave transfer-matrix method in combination with an interpolation method to calculate the whole diagram of photonic band structures in the first Brillouin zone by only looking at one single stacking direction of crystalline layers with fast numerical convergence. Using the interpolation method, one does not need to scan a considerable frequency range to accurately compute the exact value of eigenfrequency corresponding to a Bloch wave. The calculated photonic band structures by our proposed method are in good agreement with results obtained by means of the conventional plane-wave expansion method but with a better numerical convergency. The proposed approach can become an economical, flexible, and accurate numerical tool to understand and design different two-dimensional and three-dimensional photonic crystals.

© 2008 Optical Society of America

OCIS Codes
(260.2030) Physical optics : Dispersion
(160.5293) Materials : Photonic bandgap materials
(160.5298) Materials : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: March 14, 2008
Manuscript Accepted: May 26, 2008
Published: July 16, 2008

Ming Che and Zhi-Yuan Li, "Solution of photonic band diagrams by a plane-wave-based transfer-matrix method in combination with an interpolation method," J. Opt. Soc. Am. B 25, 1270-1276 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Joannopoulos, R. D. Meade, and J. Winn, Photonic Crystals (Princeton U. Press, New Jersey, 1995).
  2. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  3. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787-3790 (1996). [CrossRef] [PubMed]
  4. A. Chutinan and S. Noda, “Waveguides and waveguide bends in two-dimensional photonic crystal slabs,” Phys. Rev. B 62, 4488-4492 (2000). [CrossRef]
  5. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: Putting a new twist on light,” Nature 386, 143-149 (1997). [CrossRef]
  6. R. J. Liu, M. Ruan, F. Zhou, Z. Y. Li, B. Y. Cheng, and D. Z. Zhang, “Waveguide bend designs in three-dimensional woodpile photonic crystals,” J. Appl. Phys. 103, 034502 (2008). [CrossRef]
  7. M. Che and Z. Y. Li, “Analysis of photonic crystal waveguide bends by a plane-wave transfer-matrix method,” Phys. Rev. B 77, 125138 (2008). [CrossRef]
  8. K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152-3155 (1990). [CrossRef] [PubMed]
  9. Z. Y. Li, J. Wang, and B. Y. Gu, “Creation of partial band gaps in anisotropic photonic-band-gap structures,” Phys. Rev. B 58, 3721-3729 (1998). [CrossRef]
  10. A. Moroz, “Metallo-dielectric diamond and zinc-blende photonic crystals,” Phys. Rev. B 66, 115109 (2002). [CrossRef]
  11. H. S. Sözüer, J. W. Haus, and R. Inguva, “Photonic bands: Convergence problems with the plane-wave method,” Phys. Rev. B 45, 13962-13972 (1992). [CrossRef]
  12. Y. C. Hsue and T. J. Yang, “Applying a modified plane-wave expansion method to the calculations of transmittivity and reflectivity of a semi-infinite photonic crystal,” Phys. Rev. E 70, 016706 (2004). [CrossRef]
  13. Y. C. Hsue, A. J. Freeman, and B. Y. Gu, “Extended plane-wave expansion method in three-dimensional anisotropic photonic crystals,” Phys. Rev. B 72, 195118 (2005). [CrossRef]
  14. S. Brand, R. A. Abram, and M. A. Kaliteevski, “Complex photonic band structure and effective plasma frequency of a two-dimensional array of metal rods,” Phys. Rev. B 75, 035102 (2007). [CrossRef]
  15. J. B. Pendry, “Photonic band structures,” J. Mod. Opt. 41, 209-229 (1994). [CrossRef]
  16. J. B. Pendry, “Calculating photonic band structure,” J. Phys. Condens. Matter 8, 1085-1108 (1996). [CrossRef]
  17. Z. Y. Li and L. L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E 67, 046607 (2003). [CrossRef]
  18. Z. Y. Li and K. M. Ho, “Application of structural symmetries in the plane-wave-based transfer-matrix method for three-dimensional photonic crystal waveguides,” Phys. Rev. B 68, 245117 (2003). [CrossRef]
  19. Z. Y. Li and K. M. Ho, “Light propagation in semi-infinite photonic crystals and related waveguide structures,” Phys. Rev. B 68, 155101 (2003). [CrossRef]
  20. C. T. Chan, Q. L. Yu, and K. M. Ho, “Order-N spectral method for electromagnetic waves,” Phys. Rev. B 51, 16635-16642 (1995). [CrossRef]
  21. N. A. Nicorovici, R. C. McPhedran, and L. C. Botten, “Photonic band gaps for arrays of perfectly conducting cylinders,” Phys. Rev. E 52, 1135-1145 (1995). [CrossRef]
  22. S. Y. Liu and Z. F. Lin, “Opening up complete photonic bandgaps in three-dimensional photonic crystals consisting of biaxial dielectric spheres,” Phys. Rev. E 73, 066609 (2006). [CrossRef]
  23. A. R. McGurn, “Green's-function theory for row and periodic defect arrays in photonic band structures,” Phys. Rev. B 53, 7059-7064 (1996). [CrossRef]
  24. A. I. Rahachou and I. V. Zozoulenko, “Light propagation in finite and infinite photonic crystals: The recursive Green's function technique,” Phys. Rev. B 72, 155117 (2005). [CrossRef]
  25. J. P. Albert, C. Jouanin, D. Cassagne, and D. Bertho, “Generalized Wannier function method for photonic crystals,” Phys. Rev. B 61, 4381-4384 (2000). [CrossRef]
  26. D. M. Whittaker and M. P. Croucher, “Maximally localized Wannier functions for photonic lattices,” Phys. Rev. B 67, 085204 (2003). [CrossRef]
  27. E. Moreno, D. Erni, and C. Hafner, “Modeling of discontinuities in photonic crystal waveguides with the multiple multipole method,” Phys. Rev. E 66, 036618 (2002). [CrossRef]
  28. E. Moreno, D. Erni, and C. Hafner, “Band structure computations of metallic photonic crystals with the multiple multipole method,” Phys. Rev. B 65, 155120 (2002). [CrossRef]
  29. W. Axmann and P. Kuchment, “An efficient method for band structure calculations in 2D photonic crystals,” J. Comput. Phys. 149, 363-376 (1999). [CrossRef]
  30. D. C. Dobson, J. Gopalakrishnan, and J. E. Pasciak, “An efficient method for band structure calculations in 3D photonic crystals,” J. Comput. Phys. 161, 668-679 (2000). [CrossRef]
  31. D. S. Gao and Z. P. Zhou, “Nonlinear equation method for band structure calculations of photonic crystal slabs,” Appl. Phys. Lett. 88, 163105 (2006). [CrossRef]
  32. P. J. Chiang, C. P. Yu, and H. C. Chang, “Analysis of two-dimensional photonic crystals using a multidomain pseudospectral method,” Phys. Rev. E 75, 026703 (2007). [CrossRef]
  33. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870-1876 (1996). [CrossRef]
  34. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758-2767 (1997). [CrossRef]
  35. E. Istrate and E. H. Sargent, “Photonic crystal heterostructures and interface,” Rev. Mod. Phys. 78, 455-481 (2006). [CrossRef]
  36. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289, 604-606 (2000). [CrossRef] [PubMed]
  37. M. Che, Z. Y. Li, and R. J. Liu, “Tunable optical anisotropy in three-dimensional photonic crystal,” Phys. Rev. A 76, 023809 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited