OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 8 — Aug. 1, 2008
  • pp: 1322–1327

High-power long-period-grating-assisted erbium-doped fiber amplifier

Galina Nemova and Raman Kashyap  »View Author Affiliations

JOSA B, Vol. 25, Issue 8, pp. 1322-1327 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (279 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a new theoretical scheme for a high-power Er 3 + -doped fiber amplifier assisted with a long period grating (LPG). This cladding-pumped amplifier is predicted to generate up to 2.25 kW of continuous-wave output power at 1531 nm with a power conversion efficiency of 0.83 . This device consists of an Er 3 + -doped cladding and an undoped core pumped with a high-power laser at a wavelength of 1480 nm . The LPG imprinted in the fiber core transfers a weak input signal propagating in the core mode of a single-mode fiber into a predetermined cladding mode, dramatically increasing the effective mode-area of the signal and the threshold powers for unwanted nonlinear effects such as stimulated Raman and Brillouin scattering. Depending on the choice of the cladding mode used for amplification, a second LPG imprinted at the end of the Er 3 + -doped fiber may be used to transfer the amplified signal into a large core output fiber with high efficiency, providing a high-quality output beam in a fundamental mode.

© 2008 Optical Society of America

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(060.2410) Fiber optics and optical communications : Fibers, erbium

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: January 25, 2008
Revised Manuscript: April 3, 2008
Manuscript Accepted: May 31, 2008
Published: July 28, 2008

Galina Nemova and Raman Kashyap, "High-power long-period-grating-assisted erbium-doped fiber amplifier," J. Opt. Soc. Am. B 25, 1322-1327 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. J. Loester and E. Snitzer, “Amplification in a fiber laser,” Appl. Opt. 3, 1182-1186 (1964). [CrossRef]
  2. G. G. Vienne, J. E. Caplen, L. Dong, J. D. Minelly, J. Nilsson, and D. N. Payne, “Fabrication and characterization of Yb3+:Er3+ phosphosilicate fibers for lasers,” J. Lightwave Technol. 16, 1990-2001 (1998). [CrossRef]
  3. D. Taverner, D. J. Richardson, L. Dong, J. E. Caplen, K. Williams, and R. V. Penty, “158-μJ pulses from a single-transverse-mode, large-mode-area erbium-doped fiber amplifier,” Opt. Lett. 22, 378-380 (1997). [CrossRef] [PubMed]
  4. G. P. Lees, D. Taverner, D. J. Richardson, L. Dong, and T. P. Newson, “Q-switched erbium doped fibre laser utilising a novel large mode area fibre,” Electron. Lett. 33, 393-394 (1997). [CrossRef]
  5. Y. Jeong, J. K. Sahu, D. J. Richardson, and J. Nilsson, “Seeded erbium/ytterbium codoped fibre amplifier source with 87 W of single-frequency output power,” Electron. Lett. 39, 1717-1719 (2003). [CrossRef]
  6. C. Alegria, Y. Jeong, C. Codermard, J. K. Sahu, J. A. Alvarez-Chavez, L. Fu, M. Ibsen, and J. Nilsson, “83-W single-frequency narrow-linewidth MOPA using large-core erbium-ytterbium Co-doped fiber,” IEEE Photon. Technol. Lett. 16, 1825-1827 (2004). [CrossRef]
  7. H. L. Offerhaus, N. G. Broderick, C. D. J. Richardson, R. Sammut, J. Caplen, and L. Dong, “High-energy single-transverse-mode Q-switched fiber laser based on a multimode large-mode-area erbium-doped fiber,” Opt. Lett. 23, 1683-1685 (1998). [CrossRef]
  8. U. Griebner, R. Koch, H. Schonnagel, and R. Grunwald, “Efficient laser operation with nearly diffraction-limited output from a diode-pumped heavily Nd-doped multimode fiber,” Opt. Lett. 21, 266-268 (1996). [CrossRef] [PubMed]
  9. O. G. Okhotnikov and J. M. Sousa, “Flared single-transverse-mode fibre amplifier,” Electron. Lett. 35, 1011-1013 (1999). [CrossRef]
  10. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fibre laser with 1 kW of continuous-wave output power,” Electron. Lett. 40, 470-472 (2004). [CrossRef]
  11. J. P. Koplow, D. A. V. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett. 25, 442-444 (2000). [CrossRef]
  12. J. M. Fini, “Design of large-mode-area amplifier fibers resistant to bend-induced distortion,” J. Opt. Soc. Am. B 24, 1669-1676 (2007). [CrossRef]
  13. S. Ramachandran, J. M. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light propagation with ultralarge modal areas in optical fibers,” Opt. Lett. 31, 1797-1799 (2006). [CrossRef] [PubMed]
  14. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, 1991).
  15. A. K. Ghatak and K. Thyagarajan, Optical Electronics (Cambridge U. Press, 1989).
  16. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).
  17. V. I. Kovalev and R. G. Harrison, “Waveguide-induced inhomogeneous spectral broadening of stimulated Brillouin scattering in optical fiber,” Opt. Lett. 27, 2022-2024 (2002). [CrossRef]
  18. A. Liu, “Suppresing stimulated Brillouin scattering in fiber amplifiers using nonuniform fiber and temperature gradient,” Opt. Express 15, 977-984 (2007). [CrossRef] [PubMed]
  19. R. Kashyap, Fiber Bragg Gratings (Academic, 1999).
  20. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277-1294 (1997). [CrossRef]
  21. D. Cotter, “Transient stimulated Brillouin scattering in long single-mode fibre,” Electron. Lett. 18, 504-506 (1982). [CrossRef]
  22. A. B. Ruffin, M.-J. Li, X. Chen, A. Kobyakov, and F. Annunziata, “Brillouin gain analysis for fibers with different refractive indices,” Opt. Lett. 30, 3123-3125 (2005). [CrossRef] [PubMed]
  23. P. C. Becker, N. A. Olsson, and J. B. Simpson, Erbium-Doped Fiber Amplifiers (Academic, 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited