OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 8 — Aug. 1, 2008
  • pp: 1328–1335

Controlling the recombination rate of semiconductor active layers via coupling to dispersion-engineered surface plasmons

John Henson, Anirban Bhattacharyya, Theodore D. Moustakas, and Roberto Paiella  »View Author Affiliations

JOSA B, Vol. 25, Issue 8, pp. 1328-1335 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (588 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The coupling between excited electron-hole pairs in semiconductor active layers and surface plasmon polaritons in metallo-dielectric stacks is investigated. These structures can be used to engineer the surface-plasmon dispersion properties so as to introduce tunable singularities in the photonic density of modes, and hence in the recombination rate of nearby active media. A detailed theoretical study of this effect is presented together with the experimental demonstration of geometrically tunable increased recombination in Ga N Al Ga N quantum wells via near-UV photoluminescence measurements. If combined with a suitable geometry to efficiently scatter the emitted surface waves into radiation, this approach can be used for light-emission efficiency enhancement at tunable wavelengths.

© 2008 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(250.5230) Optoelectronics : Photoluminescence

ToC Category:
Optics at Surfaces

Original Manuscript: February 22, 2008
Revised Manuscript: May 5, 2008
Manuscript Accepted: May 6, 2008
Published: July 28, 2008

John Henson, Anirban Bhattacharyya, Theodore D. Moustakas, and Roberto Paiella, "Controlling the recombination rate of semiconductor active layers via coupling to dispersion-engineered surface plasmons," J. Opt. Soc. Am. B 25, 1328-1335 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. K. H. Drexhage, “Interaction of light with macromolecular dye layers,” in Progress in Optics, Vol. 12, E.Wolf, ed. (North Holland, 1974), pp. 163-232. [CrossRef]
  3. R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” in Advances in Chemical Physics, Vol. XXXVII, I.Prigogine and S.A.Rice, eds. (Wiley, 1978), pp. 1-66. [CrossRef]
  4. G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113, 195-287 (1984). [CrossRef]
  5. W. L. Barnes, “Fluorescence near interfaces: The role of photonic mode density,” J. Mod. Opt. 45, 661-699 (1998). [CrossRef]
  6. I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60, 11564-11567 (1999). [CrossRef]
  7. W. L. Barnes, “Electromagnetic crystals for surface plasmon polaritons and the extraction of light from emissive devices,” J. Lightwave Technol. 17, 2170-2182 (1999). [CrossRef]
  8. J. Vučković, M. Lončar, and A. Scherer, “Surface plasmon enhanced light-emitting diode,” IEEE J. Quantum Electron. 36, 1131-1144 (2000). [CrossRef]
  9. A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66, 153305 (2002). [CrossRef]
  10. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601-605 (2004). [CrossRef] [PubMed]
  11. Y. C. Lu, C. Y. Chen, D. M. Yeh, C. F. Huang, T. Y. Tang, J. J. Huang, and C. C. Yang, “Temperature dependence of the surface plasmon coupling with an InGaN/GaN quantum well,” Appl. Phys. Lett. 90, 193103 (2007). [CrossRef]
  12. C. W. Lai, J. An, and H. C. Ong, “Surface-plasmon-mediated emission from metal-capped ZnO thin films,” Appl. Phys. Lett. 86, 251105 (2005). [CrossRef]
  13. T. D. Neal, K. Okamoto, and A. Scherer, “Surface plasmon enhanced emission from dye doped polymer layers,” Opt. Express 13, 5522-5527 (2005). [CrossRef] [PubMed]
  14. J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88, 131109 (2006). [CrossRef]
  15. H. Mertens and A. Polman, “Plasmon-enhanced erbium luminescence,” Appl. Phys. Lett. 89, 211107 (2006). [CrossRef]
  16. D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett. 91, 171103 (2007). [CrossRef]
  17. G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett. 90, 111107 (2007). [CrossRef]
  18. J. B. Khurgin, “Surface plasmon-assisted laser cooling of solids,” Phys. Rev. Lett. 98, 177401 (2007). [CrossRef]
  19. T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: Tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104, 10549-10556 (2000). [CrossRef]
  20. D. D. Evanoff and G. Chumanov, “Synthesis and optical properties of silver nanoparticles and arrays,” Chem. Phys. Chem. 6, 1221-1231 (2005). [CrossRef] [PubMed]
  21. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419-422 (2003). [CrossRef] [PubMed]
  22. R. Paiella, “Tunable surface plasmons in coupled metallo-dielectric multiple layers for light-emission efficiency enhancement,” Appl. Phys. Lett. 87, 111104 (2005). [CrossRef]
  23. J. Chen, N. H. Shen, C. Cheng, Y. X. Fan, J. Ding, and H. T. Wang, “Tunable resonance in surface-plasmon-polariton enhanced spontaneous emission using a denser dielectric cladding,” Appl. Phys. Lett. 89, 051916 (2006). [CrossRef]
  24. A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacic, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005). [CrossRef] [PubMed]
  25. H. Shin and S. Fan, “All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure,” Phys. Rev. Lett. 96, 073907 (2006). [CrossRef] [PubMed]
  26. P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  27. E.D.Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).
  28. D. Brunner, H. Angerer, E. Bustarret, F. Freudenberg, R. Hopler, R. Dimitrov, O. Ambacher, and M. Stutzmann, “Optical constants of epitaxial AlGaN films and their temperature dependence,” J. Appl. Phys. 82, 5090-5096 (1997). [CrossRef]
  29. J. Bao, N. Yu, F. Capasso, T. Mates, M. Troccoli, and A. Belyanin, “Controlled modification of erbium lifetime in silicon dioxide with metallic overlayers,” Appl. Phys. Lett. 91, 131103 (2007). [CrossRef]
  30. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford U. Press, 2007), Chap. 4.
  31. S. L. Chuang, Physics of Optoelectronic Devices (Wiley, 1995), Chap. 13.
  32. Y. Kawakami, K. Omae, A. Kaneta, K. Okamoto, T. Izumi, S. Saijou, K. Inoue, Y. Narukawa, T. Mukai, and S. Fujita, “Radiative and nonradiative recombination processes in GaN-based semiconductors,” Phys. Status Solidi A 183, 41 (2001). [CrossRef]
  33. J. S. Cabalu, A. Bhattacharyya, C. Thomidis, I. Friel, T. D. Moustakas, C. J. Collins, and Ph. Komninou, “High power ultraviolet light emitting diodes based on GaN/AlGaN quantum wells produced by molecular beam epitaxy,” J. Appl. Phys. 100, 104506 (2006). [CrossRef]
  34. H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316, 430 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited