OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 8 — Aug. 1, 2008
  • pp: 1336–1340

Use of maximally entangled N-photon states for practical quantum interferometry

Gerald Gilbert, Michael Hamrick, and Yaakov S. Weinstein  »View Author Affiliations

JOSA B, Vol. 25, Issue 8, pp. 1336-1340 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (246 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The phase estimation performance of photonic N 00 N states propagating in an attenuating medium is analyzed. It is shown that the Heisenberg limit is never achieved and that an attenuated separable state of N photons will actually produce a better phase estimate than an equally attenuated N 00 N state unless the transmittance of the medium is sufficiently high. Thus, for most practical applications with realistic attenuation, N 00 N -state-based phase estimation actually performs worse than the standard quantum limit. This performance deficit becomes more pronounced as the number of photons in the signal increases.

© 2008 Optical Society of America

OCIS Codes
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: December 7, 2007
Revised Manuscript: May 13, 2008
Manuscript Accepted: May 23, 2008
Published: July 29, 2008

Gerald Gilbert, Michael Hamrick, and Yaakov S. Weinstein, "Use of maximally entangled N-photon states for practical quantum interferometry," J. Opt. Soc. Am. B 25, 1336-1340 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. C. Sanders and G. J. Milburn, “Optimal quantum measurements for phase estimation,” Phys. Rev. Lett. 75, 2944-2947 (1995). [CrossRef] [PubMed]
  2. J. P. Dowling, “Correlated input-port, matter-wave interferometer: quantum-noise limits to the atom-laser gyroscope,” Phys. Rev. A 57, 4736-4746 (1998). [CrossRef]
  3. K. T. Kapale, L. D. Didomencio, H. Lee, P. Kok, and J. P. Dowling, “Quantum interferometric sensors,” Concepts Phys. 2, 225-240 (2005).
  4. V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum metrology,” Phys. Rev. Lett. 96, 010401 (2006). [CrossRef] [PubMed]
  5. A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733-2736 (2000). [CrossRef] [PubMed]
  6. P. Kok, A. N. Boto, D. S. Abrams, C. P. Williams, S. L. Braunstein, and J. P. Dowling, “Quantum-intereferometric optical lithography: towards arbitrary two-dimensional patterns,” Phys. Rev. A 63, 063407 (2001). [CrossRef]
  7. G. Bjork, L. L. Sanchez-Soto, and J. Soderholm, “Entangled-state lithography: tailoring any pattern with a single state,” Phys. Rev. Lett. 86, 4516-4519 (2001). [CrossRef] [PubMed]
  8. V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced positioning and clock synchronization,” Nature 412, 417-419 (2001). [CrossRef] [PubMed]
  9. R. Jozsa, D. S. Abrams, J. P. Dowling, and C. P. Williams, “Quantum clock synchronization based on shared prior entanglement,” Phys. Rev. Lett. 85, 2010-2013 (2000). [CrossRef] [PubMed]
  10. L. A. Lugiato, A. Gatti, and E. Brambilla, “Quantum imaging,” J. Opt. B: Quantum Semiclassical Opt. 4, S176-S183 (2002). [CrossRef]
  11. D. V. Strekalov and J. P. Dowling, “Two-photon intereferometry for high-resolution imaging,” J. Mod. Opt. 49, 519-527 (2002). [CrossRef]
  12. For a comrehesive review see V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: beating the standard quantum limit,” Science 306, 1330-1336 (2004). [CrossRef] [PubMed]
  13. Z. Zhao, Y.-A. Chen, A.-N. Zhang, T. Yang, H. J. Briegel, and J.-W. Pan, “Experimental demonstration of five-photon entanglement and open-destination teleportation,” Nature 430, 54-58 (2004). [CrossRef] [PubMed]
  14. C.-Y. Lu, X.-Q. Zhou, O. Guhne, W.-B. Gao, J. Zhang, Z.-S. Yuan, A. Goebel, T. Yang, and J.-W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3, 91-95 (2007). [CrossRef]
  15. D. Leibrfried, E. Knill, S. Seidlin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, “Creation of six-atom 'Schrodinger cat' state,” Nature 438, 639-642 (2005). [CrossRef]
  16. H. Haffner, W. Hansel, C. F. Roos, J. Benhelm, D. Chek-al-kar, M. Chwalla, T. Kober, U. D. Rapol, M. Riebe, P. O. Schmidt, C. Becher, O. Guhne, W. Dur, and R. Blatt, “Scalable multiparticle entanglement of trapped ions,” Nature 438, 643-646 (2005). [CrossRef] [PubMed]
  17. P. Walther, J.-W. Pan, M. Aspelmeyer, R. Ursin, S. Gasparoni, and A. Zeilinger, “De Broglie wavelength of a non-local four-photon state,” Nature 429, 158-161 (2004). [CrossRef] [PubMed]
  18. M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, “Super-resolving phase measurements with a multiphoton entangled state,” Nature 429, 161-164 (2004). [CrossRef] [PubMed]
  19. V. Meyer, M. A. Rowe, D. Kielpinski, C. A. Sackett, W. M. Itano, C. Monroe, and D. J. Wineland, “Experimental demonstration of entanglement-enhanced rotation angle estimation using trapped ions,” Phys. Rev. Lett. 86, 5870-5873 (2001). [CrossRef] [PubMed]
  20. D. Leibrfried, M. D. Barrett, T. Schaetz, J. Britton, J. Chiaverini, W. M. Itano, J. D. Jost, C. Langer, and D. J. Wineland, “Toward Heisenberg-limited spectroscopy with multiparticle entangled states,” Science 304, 1476-1478 (2004). [CrossRef]
  21. S. F. Huelga, C. Macchiavello, T. Pellizzari, A. K. Ekert, M. B. Plenio, and J. I. Cirac, “Improvement of frequency standards with quantum entanglement,” Phys. Rev. Lett. 79, 3865-3868 (1997). [CrossRef]
  22. J. A. Dunningham, K. Burnett, and S. M. Barnett, “Interferometry below the standard quantum limit with Bose-Einstein condensates,” Phys. Rev. Lett. 89, 150401 (2002). [CrossRef] [PubMed]
  23. R. C. Pooser and O. Pfister, “Particle-number scaling of the phase sensitivity in realistic Bayesian twin-mode Heisenberg-limited interferometry,” Phys. Rev. A 69, 043616 (2004). [CrossRef]
  24. T. Kim, J. Dunningham, and K. Burnett, “Precision measurement scheme using a quantum interferometer,” Phys. Rev. A 72, 055801 (2005). [CrossRef]
  25. J. Dunningham and T. Kim, “Using quantum interferometers to make measurements at the Heisenberg limit,” J. Mod. Opt. 53, 557-571 (2006). [CrossRef]
  26. A. V. Chizhov, E. Schmidt, L. Knoll, and D. G. Welsch, “Propogation of entangled light pulses through dispersing and absorbing channels,” J. Opt. B: Quantum Semiclassical Opt. 3, 77-83 (2001). [CrossRef]
  27. X. Chen and L. Jiang, “The entanglement and phase measurement performance of the damped NOON state,” J. Phys. B 40, 2799-2808 (2007). [CrossRef]
  28. M. A. Rubin and S. Kaushik, “Loss-induced limits to phase measurement and precision with maximally entangled states,” Phys. Rev. A 75, 053805 (2007). [CrossRef]
  29. H. Lee, P. Kok, and J. P. Dowling, “A quantum Rosetta stone for interferometry,” J. Mod. Opt. 49, 2325-2338 (2002). [CrossRef]
  30. In this and subsequent calculations we have approximated the phase measurement uncertainty by Eq. , so that our quantitative results are valid only when the phase error is small. This approximation has been analyzed in .
  31. L. Pezze and A. Smerzi, “Phase sensitivity of a Mach-Zehnder interferometer,” Phys. Rev. A 73, 011801(R) (2006). [CrossRef]
  32. G. A. Durkin and J. P. Dowling, “Local and global distinguishability in quantum interferometry,” Phys. Rev. Lett. 99, 070801 (2007). [CrossRef] [PubMed]
  33. R. Loudon, The Quantum Theory of Light (Oxford U. Press, 2000).
  34. The field operator function, b(z), has different physical dimensionality than do the field operators ai, with the former related to the latter by a factor of a square root of length.
  35. J. J. Bollinger, W. M. Itano, D. J. Wineland, and D. J. Heinzen, “Optical frequency measurements with maximally correlated states,” Phys. Rev. A 54, R4649-R4652 (1996). [CrossRef] [PubMed]
  36. C. C. Gerry, “Heisenberg-limit interferometry with four-wave mixers operating in a nonlinear regime,” Phys. Rev. A 61, 043811 (2000). [CrossRef]
  37. C. C. Gerry and R. A. Campos, “Generation of maximally entangled states of a Bose-Einstein condensate and Heisenberg-limited phase resolution,” Phys. Rev. A 68, 025602 (2003). [CrossRef]
  38. The photons in the separable state are injected into the interferometer at different times, labeled by tk, where k=1,...,N, with measurements independently applied to each photon. The index k is used to properly count these separate injection events.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited