OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 8 — Aug. 1, 2008
  • pp: 1380–1386

Advanced bismuth-doped lead-germanate glass for broadband optical gain devices

M. Hughes, T. Suzuki, and Y. Ohishi  »View Author Affiliations

JOSA B, Vol. 25, Issue 8, pp. 1380-1386 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (654 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We fabricated a series of glasses with the composition 94.7 - χ GeO 2 - 5 Al 2 O 3 - 0.3 Bi 2 O 3 - χ PbO ( χ = 0 24 mol. % ) . Characteristic absorption bands of bismuth centered at 500, 700, 800, and 1000 nm were observed. Adding PbO was found to decrease the strength of bismuth absorption. The addition of 3%–4% PbO resulted in a 50% increase in lifetime, a 20-fold increase in quantum efficiency, and a 28-fold increase in the product of emission cross section and lifetime on the 0% PbO composition. We propose that the 800 nm absorption band relates a different bismuth center than the other absorption bands.

© 2008 Optical Society of America

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(300.2530) Spectroscopy : Fluorescence, laser-induced

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 28, 2008
Revised Manuscript: June 4, 2008
Manuscript Accepted: June 15, 2008
Published: July 30, 2008

M. Hughes, T. Suzuki, and Y. Ohishi, "Advanced bismuth-doped lead-germanate glass for broadband optical gain devices," J. Opt. Soc. Am. B 25, 1380-1386 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low-noise erbium-doped fiber amplifier operating at 1.54μm,” Electron. Lett. 23, 1026-1028 (1987). [CrossRef]
  2. M. Yamada, M. Shimizu, T. Kanamori, Y. Ohishi, Y. Terunuma, K. Oikawa, H. Yoshinaga, K. Kikushima, Y. Miyamoto, and S. Sudo, “Low-noise and high-power Pr3+-doped fluoride fiber amplifier,” IEEE Photonics Technol. Lett. 7, 869-871 (1995). [CrossRef]
  3. T. Komukai, T. Yamamoto, T. Sugawa, and Y. Miyajima, “Upconversion pumped thulium-doped fluoride fiber amplifier and laser operating at 1.47μm,” IEEE J. Quantum Electron. 31, 1880-1889 (1995). [CrossRef]
  4. T. Sakamoto, M. Shimizu, M. Yamada, T. Kanamori, Y. Ohishi, Y. Terunuma, and S. Sudo, “35-dB gain Tm-doped ZBLYAN fiber amplifier operating at 1.65μm,” IEEE Photonics Technol. Lett. 8, 349-351 (1996). [CrossRef]
  5. M. Hughes, H. Rutt, D. Hewak, and R. Curry, “Spectroscopy of vanadium (III) doped gallium lanthanum sulphide glass,” Appl. Phys. Lett. 90, 031108 (2007). [CrossRef]
  6. Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. Appl. Phys., Part 2 40, L279-L281 (2001). [CrossRef]
  7. Y. Fujimoto and M. Nakatsuka, “Optical amplification in bismuth-doped silica glass,” Appl. Phys. Lett. 82, 3325-3326 (2003). [CrossRef]
  8. E. M. Dianov, V. V. Dvoyrin, V. M. Mashinsky, A. A. Umnikov, M. V. Yashkov, and A. N. Gur'yanov, “CW bismuth fibre laser,” Quantum Electron. 35, 1083-1084 (2005). [CrossRef]
  9. Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett. 90, 261110 (2007). [CrossRef]
  10. J. Ren, J. Qiu, B. Wu, and D. Chen, “Ultrabroad infrared luminescence from Bi-doped alkaline earth metal germanate glasses,” J. Mater. Res. 22, 1574-1577 (2007). [CrossRef]
  11. T. Suzuki and Y. Ohishi, “Ultrabroadband near-infrared emission from Bi-doped Li2O-Al2O3-SiO2 glass,” Appl. Phys. Lett. 88, 191912 (2006). [CrossRef]
  12. X.-G. Meng, J.-R. Qiu, M.-Y. Peng, D.-.P Chen, Q.-Z. Zhao, X.-W. Jiang, and C.-S. Zhu, “Infrared broadband emission of bismuth-doped barium-aluminum-borate glasses,” Opt. Express 13, 1635-1642 (2005). [CrossRef] [PubMed]
  13. S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett. 91, 061919 (2007). [CrossRef]
  14. M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth and aluminium codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29, 1998-2000 (2004). [CrossRef] [PubMed]
  15. X. Wang and H. Xia, “Infrared superbroadband emission of Bi ion doped germanium-aluminum-sodium glass,” Opt. Commun. 268, 75-78 (2006). [CrossRef]
  16. M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30, 2433-2435 (2005). [CrossRef] [PubMed]
  17. M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids 351, 2388-2393 (2005). [CrossRef]
  18. C. E. Finlayson, A. Amezcua, P. J. Sazio, P. S. Walker, M. C. Grossel, R. J. Curry, D. C. Smith, and J. J. Baumberg, “Infrared emitting PbSe nanocrystals for telecommunications window applications,” J. Mod. Opt. 52, 955-964 (2005). [CrossRef]
  19. N. C. Greenham, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chem. Phys. Lett. 241, 89-96 (1995). [CrossRef]
  20. M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids 351, 2388-2393 (2005). [CrossRef]
  21. V. N. Sigaev, I. Gregora, P. Pernice, B. Champagnon, E. N. Smelyanskaya, A. Aronne, and P. D. Sarkisov, “Structure of lead germanate glasses by Raman spectroscopy,” J. Non-Cryst. Solids 279, 136-144 (2001). [CrossRef]
  22. J. Wang, J. R. Lincoln, W. S. Brocklesby, R. S. Deol, C. J. Mackechnie, A. Pearson, A. C. Tropper, D. C. Hanna, and D. N. Payne, “Fabrication and optical properties of lead-germanate glasses and a new class of optical fibers doped with Tm3+,” J. Appl. Phys. 73, 8066-8075 (1993). [CrossRef]
  23. J. C. Phillips, “Stretched exponential relaxation in molecular and electronic glasses,” Rep. Prog. Phys. 59, 1133-1207 (1996). [CrossRef]
  24. K. C. B. Lee, J. Siegel, S. E. D. Webb, S. Leveque-Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, and P. M. W. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” Biophys. J. 81, 1265-1274 (2001). [CrossRef] [PubMed]
  25. R. A. L. Vallée, M. Cotlet, J. Hofkens, F. C. D. Schryver, and K. Mullen, “Spatially heterogeneous dynamics in polymer glasses at room temperature probed by single molecule lifetime fluctuations,” Macromolecules 36, 7752-7758 (2003). [CrossRef]
  26. G. Mauckner, K. T. T. Baier, T. Walter, and F. L. Sauer, “Temperature dependent lifetime distribution of the photoluminescence S-band in porous silicon,” J. Appl. Phys. 75, 4167-4170 (1993). [CrossRef]
  27. R. Chen, “Apparent stretched-exponential luminescence decay in crystalline solids,” J. Lumin. 102-103, 510-518 (2003). [CrossRef]
  28. J. Wlodarczyk and B. Kierdaszuk, “Interpretation of fluorescence decays using a power-like model,” Biophys. J. 85, 589-598 (2003). [CrossRef] [PubMed]
  29. A. B. Seddon, D. Furniss, M. S. Iovu, S. D. Shutov, N. N. Syrbu, A. M. Andriesh, P. Hertogen, and G. J. Adriaenssens, “Optical absorption and visible luminescence in Ga-La-S-O glass doped with Pr3+ ions,” J. Optoelectron. Adv. Mater. 5, 1107-1113 (2003).
  30. D. C. Johnston, “Stretched exponential relaxation arising from a continuous sum of exponential decays,” Phys. Rev. B 74, 184430 (2006). [CrossRef]
  31. P. Hetman, B. Szabat, K. Weron, and D. Wodzinski, “On the Rajagopal relaxation-time distribution and its relationship to the Kohlrausch-Williams-Watts relaxation function,” J. Non-Cryst. Solids 330, 66-74 (2003). [CrossRef]
  32. I. Svare, S. W. Martin, and F. Borsa, “Stretched exponentials with T-dependent exponents from fixed distributions of energy barriers for relaxation times in fast-ion conductors,” Phys. Rev. B 61, 228-233 (2000). [CrossRef]
  33. S. Kuck, K. Peterman, U. Pohlmann, and G. Huber, “Near-infrared emission of Cr4+ doped garnates: lifetimes quantum efficiencies and emission cross sections,” Phys. Rev. B 51, 17323-17331 (1995). [CrossRef]
  34. X.-G. Meng, J.-R. Qiu, M.-Y. Peng, D.-P. Chen, Q.-Z. Zhao, X.-W. Jiang, and C.-S. Zhu, “Near infrared broadband emission of bismuth-doped aluminophosphate glass,” Opt. Express 13, 1628-1634 (2005). [CrossRef] [PubMed]
  35. Y. Ohishi, “Novel photonics materials for broadband lightwave processing,” in Photonics West (SPIE, 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited