OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 9 — Sep. 1, 2008
  • pp: 1414–1421

Fundamental and higher-order Bloch surface plasmons in planar bimetallic gratings on silicon and glass substrates

Andrey Kobyakov, Arash Mafi, Aramais R. Zakharian, Sergey A. Darmanyan, and Kevin B. Sparks  »View Author Affiliations

JOSA B, Vol. 25, Issue 9, pp. 1414-1421 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (4600 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study fundamental and higher-order (HO) localized Bloch surface plasmons (BSPs) in a 1D subwavelength-periodic thin metal film with silicon and glass claddings. The film is a lamellar bimetallic grating where the real part of permittivity of the slit is also negative. We show that transmission enhancement due to HO BSPs is much weaker compared with the case when the first-order or fundamental BSP (FBSP) mediates resonant transmission. We also identify parameters of the structure corresponding to the mixed-order double resonance, i.e., a resonance between the FBSP on one surface of the film and a HO BSP on the other surface. We show that, unlike the double resonance between two FBSPs, this condition does not affect the transmission enhancement. Finally, we observe strong suppression of transmittance for a structure with a silicon superstrate and glass substrate. This effect occurs only when all higher-order harmonics in the substrate are evanescent. In the regime of transmission suppression, the propagating zero-order diffracted wave and evanescent first-order diffracted harmonic at the metal–glass interface are phase shifted by π.

© 2008 Optical Society of America

OCIS Codes
(240.0310) Optics at surfaces : Thin films
(240.6680) Optics at surfaces : Surface plasmons
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optics at Surfaces

Original Manuscript: May 1, 2008
Manuscript Accepted: July 2, 2008
Published: August 13, 2008

Andrey Kobyakov, Arash Mafi, Aramais R. Zakharian, Sergey A. Darmanyan, and Kevin B. Sparks, "Fundamental and higher-order Bloch surface plasmons in planar bimetallic gratings on silicon and glass substrates," J. Opt. Soc. Am. B 25, 1414-1421 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131-314 (2005). [CrossRef]
  2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  3. J.Homola, ed., Surface Plasmon Resonance Based Sensors (Springer, 2006). [CrossRef]
  4. X. D. Xoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23, 151-160 (2007). [CrossRef]
  5. A. Krishnan, T. Thio, T. J. Kim, H. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1-7 (2001). [CrossRef]
  6. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004). [CrossRef] [PubMed]
  7. J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845-2848 (1999). [CrossRef]
  8. Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002). [CrossRef] [PubMed]
  9. Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, “Transmission of light through a periodic array of slits in a thick metallic film,” Opt. Express 13, 4485-4491 (2005). [CrossRef] [PubMed]
  10. F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003). [CrossRef] [PubMed]
  11. I. Avrutsky, Y. Zhao, and V. Kochergin, “Surface-plasmon-assisted resonant tunneling of light through a periodically corrugated thin metal film,” Opt. Lett. 25, 595-597 (2000). [CrossRef]
  12. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26, 1972-1974 (2001). [CrossRef]
  13. H. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12, 3629-3651 (2004). [CrossRef] [PubMed]
  14. N. Bonod, S. Enoch, L. Li, E. Popov, and M. Nevière, “Resonant optical transmission through thin metallic films with and without holes,” Opt. Express 11, 482-490 (2003). [CrossRef] [PubMed]
  15. S. Shen, E. Forsberg, Z. Han, and S. He, “Strong resonance coupling of surface plasmon polaritons to radiation modes through a thin metal slab with dielectric gratings,” J. Opt. Soc. Am. A 24, 225-230 (2007). [CrossRef]
  16. K. G. Lee and Q.-H. Park, “Coupling of surface plasmon polaritons and light in metallic nanoslits,” Phys. Rev. Lett. 95, 103902 (2005). [CrossRef] [PubMed]
  17. S.-H. Chang, S. K. Gray, and G. C. Schatz, “Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films,” Opt. Express 13, 3150-3165 (2005). [CrossRef] [PubMed]
  18. S. A. Darmanyan and A. V. Zayats, “Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: an analytical study,” Phys. Rev. B 67, 035424 (2003). [CrossRef]
  19. V.M.Agranovich and D.L.Mills, eds., Surface Polaritons (North Holland, 1982).
  20. A.D.Boardman, ed., Electromagnetic Surface Modes (Wiley, 1982).
  21. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer Verlag, 1988).
  22. A. M. Dykhne, A. K. Sarychev, and V. M. Shalaev, “Resonant transmission through metal films with fabricated and light-induced modulation,” Phys. Rev. B 67, 195402 (2003). [CrossRef]
  23. S. A. Darmanyan, M. Nevière, and A. V. Zayats, “Analytical theory of optical transmission through periodically structured metal films via tunnel-coupled surface polariton modes,” Phys. Rev. B 70, 075103 (2004). [CrossRef]
  24. A. Kobyakov, A. R. Zakharian, A. Mafi, and S. A. Darmanyan, “Semi-analytical method for light interaction with 1D-periodic nanoplasmonic structures,” Opt. Express 16, 8938-8957 (2008). [CrossRef] [PubMed]
  25. B. Laks, D. L. Mills, and A. A. Maradudin, “Surface polaritons on large-amplitude gratings,” Phys. Rev. B 23, 4965-4976 (1981). [CrossRef]
  26. N. E. Glass and A. A. Maradudin, “Diffraction of light by a periodically modulated dielectric half-space,” Phys. Rev. B 29, 1840-1847 (1984). [CrossRef]
  27. X. Luo and T. Ishihara, “Subwavelength photolithography based on surface-plasmon polariton resonance,” Opt. Express 12, 3055-3065 (2004). [CrossRef] [PubMed]
  28. A. V. Kats and A. Y. Nikitin, “Analytical treatment of anomalous transparency of a modulated metal film due to surface plasmon-polariton excitation,” Phys. Rev. B 70, 235412 (2004). [CrossRef]
  29. W. Cai, D. A. Genov, and V. M. Shalaev, “Superlens based metal-dielectric composites,” Phys. Rev. B 72, 193101 (2005). [CrossRef]
  30. P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125, 164705 (2006). [CrossRef] [PubMed]
  31. http://comsol.com.
  32. E.Palik and G.Ghosh, eds., The Electronic Handbook of Optical Constants of Solids (Academic, 1999).
  33. A. Hessel and A. A. Oliner, “A new theory of Wood's anomalies on optical gratings,” Appl. Opt. 4, 1275-1297 (1965). [CrossRef]
  34. J. E. Kihm, Y. C. Yoon, K. G. Yee, D. J. Park, D. S. Kim, C. Ropers, C. Lienau, J. W. Park, J. Kim, and Q.-H. Park, “Positive and negative band gaps, Rayleigh-Wood's anomalies in plasmonic band-gap structures,” in Proceedings of the Quantum Electronics and Laser Science Conference 2005 (QELS 2005), Technical Digest (CD) (Optical Society of America, 2005), paper QMK6. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited