OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 9 — Sep. 1, 2008
  • pp: 1466–1473

Dirichlet-to-Neumann map method for analyzing interpenetrating cylinder arrays in a triangular lattice

Yumao Wu and Ya Yan Lu  »View Author Affiliations


JOSA B, Vol. 25, Issue 9, pp. 1466-1473 (2008)
http://dx.doi.org/10.1364/JOSAB.25.001466


View Full Text Article

Enhanced HTML    Acrobat PDF (761 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An efficient numerical method is developed for computing the transmission and reflection spectra of finite two-dimensional photonic crystals composed of circular cylinders in a triangular lattice. Our method manipulates a pair of operators defined on a set of curves, and it remains effective when the radius of the cylinders is larger than 3 4 of the lattice constant—a condition where different arrays of cylinders cannot be separated by planes without intersecting the cylinders. The method is efficient since it never calculates the wave field in the interiors of the (hexagon) unit cells and it approximates the operators by small matrices. This is achieved by using the Dirichlet-to-Neumann (DtN) maps of the unit cells, which map the wave field on the boundaries of the unit cells to its normal derivative.

© 2008 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Diffraction and Gratings

History
Original Manuscript: May 15, 2008
Revised Manuscript: July 5, 2008
Manuscript Accepted: July 5, 2008
Published: August 18, 2008

Citation
Yumao Wu and Ya Yan Lu, "Dirichlet-to-Neumann map method for analyzing interpenetrating cylinder arrays in a triangular lattice," J. Opt. Soc. Am. B 25, 1466-1473 (2008)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-25-9-1466


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 1995).
  2. G. Bao, D. C. Dobson, and J. A. Cox, “Mathematical studies in rigorous grating theory,” J. Opt. Soc. Am. A 12, 1029-1042 (1995). [CrossRef]
  3. P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13, 779-784 (1996). [CrossRef]
  4. L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13, 1024-1035 (1996). [CrossRef]
  5. G. Bao, Z. M. Chen, and H. J. Wu, “Adaptive finite-element method for diffraction gratings,” J. Opt. Soc. Am. A 22, 1106-1114 (2005). [CrossRef]
  6. S. Venakides, M. A. Haider, and V. Papanicolaou, “Boundary integral calculations of two-dimensional electromagnetic scattering by photonic crystal Fabry-Perot structures,” SIAM J. Appl. Math. 60, 1686-1706 (2000). [CrossRef]
  7. R. C. McPhedran, L. C. Botten, A. A. Asatryan, N. A. Nicorovici, P. A. Robinson, and C. M. de Sterke, “Calculation of electromagnetic properties of regular and random arrays of metallic and dielectric cylinders,” Phys. Rev. E 60, 7614-7617 (1999). [CrossRef]
  8. L. C. Botten, N. A. Nicorovici, A. A. Asatryan, R. C. McPhedran, C. M. de Sterke, and P. A. Robinson, “Formulation for electromagnetic scattering and propagation through grating stacks of metallic and dielectric cylinders for photonic crystal calculations. Part I. Method,” J. Opt. Soc. Am. A 17, 2165-2176 (2000). [CrossRef]
  9. T. Kushta and K. Yasumoto, “Electromagnetic scattering from periodic arrays of two circular cylinders per unit cell,” Prog. Electromagn. Res. 29, 69-85 (2000). [CrossRef]
  10. L. C. Botten, T. P. White, A. A. Asatryan, T. N. Langtry, C. M. de Sterke, and R. C. McPhedran, “Bloch mode scattering matrix methods for modeling extended photonic crystal structures. I. Theory,” Phys. Rev. E 70, 056606 (2004). [CrossRef]
  11. K. Yasumoto, H. Toyama, and T. Kushta, “Accurate analysis of two-dimensional electromagnetic scattering from multilayered periodic arrays of circular cylinders using lattice sums technique,” IEEE Trans. Antennas Propag. 52, 2603-2611 (2004). [CrossRef]
  12. K. Yasumoto, H. Jia, and H. Toyama, “Analysis of two-dimensional electromagnetic crystals consisting of multilayered periodic arrays of circular cylinders,” Electron. Commun. Jpn., Part 2: Electron. 88, 19-28 (2005). [CrossRef]
  13. Y. Huang and Y. Y. Lu, “Scattering from periodic arrays of cylinders by Dirichlet-to-Neumann maps,” J. Lightwave Technol. 24, 3448-3453 (2006). [CrossRef]
  14. Y. Huang and Y. Y. Lu, “Modeling photonic crystals with complex unit cells by Dirichlet-to-Neumann maps,” J. Comput. Math. 25, 337-349 (2007).
  15. S. J. Li and Y. Y. Lu, “Multipole Dirichlet-to-Neumann map method for photonic crystals with complex unit cells,” J. Opt. Soc. Am. A 24, 2438-2442 (2007). [CrossRef]
  16. L. C. Botten, N. A. Nicorovici, R. C. McPhedran, C. M. de Sterke, and A. A. Asatryan, “Photonic band structure calculations using scattering matrices,” Phys. Rev. E 64, 046603, 2001. [CrossRef]
  17. J. Yuan and Y. Y. Lu, “Computing photonic band structures by Dirichlet-to-Neumann maps: the triangular lattice,” Opt. Commun. 273, 114-120 (2007). [CrossRef]
  18. K. Sakoda, “Optical transmittance of a two-dimensional triangular photonic lattice,” Phys. Rev. B 51, 4672-4675 (1995). [CrossRef]
  19. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis,” Opt. Express 8, 173-190 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited