OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 9 — Sep. 1, 2008
  • pp: 1479–1487

Dynamics of multifrequency mode-locking driven by homogenous and inhomogenous gain broadening effects

Brandon G. Bale, J. Nathan Kutz, and Edward D. Farnum  »View Author Affiliations

JOSA B, Vol. 25, Issue 9, pp. 1479-1487 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (400 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A complete characterization is given of the effects of homogeneous and inhomogeneous gain broadening on the mode-locking dynamics and stability of a laser operating simultaneously at N frequency channels. Using a low-dimensional model for the wavelength-division multiplexing interactions of the governing cubic-quintic master mode-locking equation, the interplay of the gain dynamics can be completely classified. This gives a simple way to characterize the laser performance and the parameter regimes under which stable multifrequency operation can be achieved. The analysis shows that a small amount of inhomogeneous gain broadening is critical for the multifrequency operation. The model further provides a simple framework for understanding the stability of mode-locked pulses at multiple frequencies, thus contributing to the characterization of the increasingly important and timely technology of dual-frequency and multifrequency mode-locked laser cavities.

© 2008 Optical Society of America

OCIS Codes
(060.4230) Fiber optics and optical communications : Multiplexing
(140.4050) Lasers and laser optics : Mode-locked lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: May 8, 2008
Revised Manuscript: June 18, 2008
Manuscript Accepted: July 1, 2008
Published: August 19, 2008

Brandon G. Bale, J. Nathan Kutz, and Edward D. Farnum, "Dynamics of multifrequency mode-locking driven by homogenous and inhomogenous gain broadening effects," J. Opt. Soc. Am. B 25, 1479-1487 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley-Interscience, 2002). [CrossRef]
  2. A. Hasegawa, Optical Solitons in Fibers (Springer-Verlag, 1989). [CrossRef]
  3. H. A. Haus and W. S. Wong, “Solitons in optical communications,” Rev. Mod. Phys. 68, 423-444 (1996). [CrossRef]
  4. A. E. Siegman, Lasers (University Science Books, 1986).
  5. I. N. Duling III and M. L. Dennis, Compact Sources of Ultrashort Pulses (Cambridge U. Press, 1995). [CrossRef]
  6. H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1173-1185 (2000). [CrossRef]
  7. Y. Shiquan, L. Zhaohui, Y. Shuzhong, D. Xiaoyyi, K. Guiyun, and Z. Qida, “Dual-wavelength actively mode-locked erbium dobed fiber laser using FBGs,” in Advances in Fiber Lasers, L.N.Duprasula, ed., Proc. SPIE 4974, 43-49 (2003). [CrossRef]
  8. H. Dong, G. Zhu, Q. Wang, and N. K. Dutta, “Simultaneous mode locked operation of a fiber laser at two wavelengths,” in Physics and Simulation of Optoelectronic Devices XII, M.Osinski, H.Amano, and F.Henneberger, eds., Proc. SPIE 5349, 117-121 (2004). [CrossRef]
  9. Z. Ahned and N. Onodera, “High repetition rate optical pulse generation by frequency multiplication in actively mode-locked fiber ring lasers,” Electron. Lett. 32, 455455 (1996).
  10. C. Wu and N. K. Dutta, “High repetition-rate optical pulse generation using a rational harmonic mode-locked fiber laser,” IEEE J. Quantum Electron. 36, 145-150 (2000). [CrossRef]
  11. Z. Li, C. Lou, Y. Gao, and K. T. Chan, “A dual-wavelength and dual-repetition-rate actively mode-locked fiber ring laser,” Opt. Commun. 185, 381-385 (2000). [CrossRef]
  12. E. Farnum, L. Butson, and J. N. Kutz, “Theory and simulation of dual-frequency mode-locked lasers,” J. Opt. Soc. Am. B 23, 257-264 (2006). [CrossRef]
  13. E. Farnum and J. N. Kutz, “Multifrequency mode-locked lasers,” J. Opt. Soc. Am. B 25, 1002-1010 (2008). [CrossRef]
  14. B. G. Bale, E. Farnum, and J. N. Kutz, “Theory and simulation of passive multi-frequency mode-locking with waveguide arrays,” IEEE J. Quantum Electron. (to be published).
  15. E. Desurvire, Erbium-Doped Fiber Amplifiers Principles and Applications (Wiley-Interscience, 1994).
  16. J. N. Kutz, “Mode-locked soliton lasers,” SIAM Rev. 48, 629-678 (2006). [CrossRef]
  17. L. F. Mollenauer, S. G. Evangelides, and J. P. Gordon, “Wavelength division multiplexing with solitons in ultra-longdistance transmission using lumped amplifiers,” J. Lightwave Technol. 9, 362-367 (1991); see Appendix. [CrossRef]
  18. A. Hasegawa and Y. Kodama, Solitons in Optical Communications, (Oxford U. Press, 1995), Chap. 10.
  19. T. Kapitula, J. N. Kutz, and B. Sandstede, “Stability of pulses in the master-modelocking equation,” J. Opt. Soc. Am. B 19, 740-746 (2002). [CrossRef]
  20. A. Komarov, H. Leblond, and F. Sanchez, “Quintic complex Ginzburg-Landau model for ring fiber lasers,” Phys. Rev. E 72, 025604 (2005). [CrossRef]
  21. H. Leblond, M. Salhi, A. Hideur, T. Chartier, M. Brunel, and F. Sanchez, “Experimental and theoretical study of the passively mode-locked ytterbium-doped double-clad fiber laser,” Phys. Rev. A 65, 063811 (2002). [CrossRef]
  22. A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14, 10095-10100 (2006). [CrossRef] [PubMed]
  23. A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ,” Opt. Lett. 32, 2408-2410 (2007). [CrossRef] [PubMed]
  24. B. G. Bale, J. N. Kutz, A. Chong, W. H. Renninger, and F. W. Wise, “Spectral filtering for mode-locking in the normal dispersive regime,” Opt. Lett. 33, 941-943 (2008). [CrossRef] [PubMed]
  25. B. G. Bale, J. N. Kutz, A. Chong, W. H. Renninger, and F. W. Wise, “Spectral filtering for high-energy mode-locking in normal dispersion lasers,” J. Opt. Soc. Am. B (to be published).
  26. G. Whitham, Linear and Nonlinear Waves (Wiley-Interscience, 1974).
  27. D. Anderson, M. Lisak, and A. Berntson, “A variational approach to nonlinear evolution equations in optics,” Pramana, J. Phys. 57, 917-936 (2001). [CrossRef]
  28. B. G. Bale and J. N. Kutz, “Variational method for mode-locked lasers,” J. Opt. Soc. Am. B 25, 1193-1202 (2008). [CrossRef]
  29. C. Jirauschek, U. Morgner, and F. X. Kärtner, “Variational analysis of spatio-temporal pulse dynamics in dispersive Kerr media,” J. Opt. Soc. Am. B 19, 1716-1721 (2002). [CrossRef]
  30. C. Jirauschek, F. X. Kärtner, and U. Morgner, “Spatiotemporal Gaussian pulse dynamics in Kerr-lens mode-locked lasers,” J. Opt. Soc. Am. B 20, 1356-1368 (2003). [CrossRef]
  31. C. Antonelli, J. Chen, and F. X. Kärtner, “Intracavity pulse dynamics and stability for passively mode-locked lasers,” Opt. Express 15, 5919-5924 (2007). [CrossRef] [PubMed]
  32. P. G. Drazin, Nonlinear Systems (Cambridge U. Press, 1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited