OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 1 — Jan. 1, 2009
  • pp: 10–16

All-optical ultracompact photonic crystal AND gate based on nonlinear ring resonators

Parisa Andalib and Nosrat Granpayeh  »View Author Affiliations

JOSA B, Vol. 26, Issue 1, pp. 10-16 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (962 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have proposed an ultracompact all-optical photonic crystal AND gate based on nonlinear ring resonators, consisting of two Kerr nonlinear photonic crystal ring resonators inserted between three parallel line defects. We have employed a Si nanocrystal as the nonlinear material for its appropriate nonlinear properties. The gate has been simulated and analyzed by finite difference time domain and plane wave expansion methods. The proposed logic gate can operate with a bit rate of about 120 Gbits s .

© 2008 Optical Society of America

OCIS Codes
(130.3750) Integrated optics : Optical logic devices
(190.3270) Nonlinear optics : Kerr effect
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(230.1150) Optical devices : All-optical devices
(230.5298) Optical devices : Photonic crystals

ToC Category:
Nonlinear Optics

Original Manuscript: August 22, 2008
Revised Manuscript: October 21, 2008
Manuscript Accepted: October 24, 2008
Published: December 10, 2008

Parisa Andalib and Nosrat Granpayeh, "All-optical ultracompact photonic crystal AND gate based on nonlinear ring resonators," J. Opt. Soc. Am. B 26, 10-16 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. B. Fraga, J. W. M. Menezes, M. G. da Silva, C. S. Sobrinho, and A. S. B. Sombra, “All optical logic gates based on an asymmetric nonlinear directional coupler,” Opt. Commun. 262, 32-37 (2006). [CrossRef]
  2. A. Rostami and G. Rostami, “Full optical analog to digital (A/D) converter based on Kerr-like nonlinear ring resonator,” Opt. Commun. 228, 39-48 (2003). [CrossRef]
  3. K. Igarashi and K. Kikuchi, “Optical signal processing by phase modulation and subsequent spectral filtering aiming at applications to ultrafast optical communication systems,” IEEE J. Sel. Top. Quantum Electron. 14, 551-565 (2008). [CrossRef]
  4. Y.-D. Wu, T.-T. Shih, and M.-H. Chen, “New all-optical logic gates based on the local nonlinear Mach-Zehnder interferometer,” Opt. Express 16, 248-257 (2008). [CrossRef] [PubMed]
  5. S. Pereira, P. Chak, and J. E. Sipe, “All-optical AND gate by use of a Kerr nonlinear microresonator structure,” Opt. Lett. 28, 444-446 (2003). [CrossRef] [PubMed]
  6. Z. Li, Z. Chen, and B. Li, “Optical pulse controlled all-optical logic gates in SiGe/Si multimode interference,” Opt. Express 13, 1033-1038 (2005). [CrossRef] [PubMed]
  7. M. Lipson, “Switching light on a silicon chip,” Opt. Mater. 27, 731-739 (2005). [CrossRef]
  8. Y. Dumeige, L. Ghisa, P. Féron, and Y. Dumeige, “Integrated all-optical pulse restoration with coupled nonlinear microring resonators,” Opt. Lett. 31, 2187-2189 (2006). [CrossRef] [PubMed]
  9. T. A. Ibrahim, K. Amarnath, L. C. Kuo, R. Grover, V. Van, and P.-T. Ho, “Photonic logic NOR gate based on two symmetric microring resonators,” Opt. Lett. 29, 2779-2781 (2004). [CrossRef] [PubMed]
  10. C. A. Barrios, “High-performance all-optical silicon microswitch,” Electron. Lett. 40, 862-863 (2004). [CrossRef]
  11. C. Lixue, D. Xiaoxu, D. Weiqiang, C. Liangcai, and L. Shutian, “Finite-difference time-domain analysis of optical bistability with low threshold in one-dimensional nonlinear photonic crystal with Kerr medium,” Opt. Commun. 209, 491-500 (2002). [CrossRef]
  12. T. Fujisawa and M. Koshiba, “All-optical logic gates based on nonlinear slot-waveguide couplers,” J. Opt. Soc. Am. B 23, 684-691 (2006). [CrossRef]
  13. D. V. Novistisky and S. Y. Mikhnevich, “Bistable behavior of reflection and transmission of a one-dimensional photonic crystal with a dense resonant medium as defect,” J. Opt. Soc. Am. B 25, 1362-1370 (2008). [CrossRef]
  14. M. G. Banaee, A. R. Cowan, and J. F. Young, “Third-order nonlinear influence on the specular reflectivity of two-dimensional waveguide-based photonic crystal,” J. Opt. Soc. Am. B 19, 2224-2231 (2002). [CrossRef]
  15. S. F. Mingaleev and Y. S. Kivshar, “Nonlinear transmission and light localization in photonic-crystal waveguides,” J. Opt. Soc. Am. B 19, 2241-2249 (2002). [CrossRef]
  16. A. Kumar and T. Kurz, “Switching between bistable states of a soliton inhomogenously doped fiber coupler,” J. Opt. Soc. Am. B 18, 897-900 (2001). [CrossRef]
  17. M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E 66, 055601 (2002). [CrossRef]
  18. K. Ikeda and Y. Fainman, “Material and structural criteria for ultra-fast Kerr nonlinear switching in optical resonant cavities,” Solid-State Electron. 51, 1376-1380 (2007). [CrossRef]
  19. M. F. Yanik and S. Fan, “All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry,” Opt. Lett. 28, 2506-2508 (2003). [CrossRef] [PubMed]
  20. M. F. Yanik and S. Fana, “High-contrast all-optical bistable switching in photonic crystal microcavities,” Appl. Phys. Lett. 83, 2739-2741 (2003). [CrossRef]
  21. S. F. Mingaleev, A. E. Miroshnichenko, Y. S. Kivshar, and K. Busch, “All-optical switching, bistability, and slow light transmission in photonic crystal waveguide-resonator structures,” Phys. Rev. E 74, 046603 (2006). [CrossRef]
  22. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13, 2678-2687 (2005). [CrossRef] [PubMed]
  23. L.-X. Chena and D. Kimb, “A bistable switching of two-dimensional photonic crystal with Kerr point defect,” Opt. Commun. 218, 19-26 (2003). [CrossRef]
  24. K. Ogusu and K. Takayama, “Optical bistability in photonic crystal microrings with nonlinear dielectric materials,” Opt. Express 16, 7525-7539 (2008). [CrossRef] [PubMed]
  25. H. Xiao and D. Yao, “Optical limitation in two-dimensional nonlinear photonic crystal with triangular lattice,” Phys. Lett. A 359, 723-727 (2006). [CrossRef]
  26. D. Pelinovsky, J. Sears, L. Brzozowski, and E. H. Sargent, “Stable all-optical limiting in nonlinear periodic structures. I. Analysis,” J. Opt. Soc. Am. B 19, 43-53 (2002). [CrossRef]
  27. D. Pelinovsky and E. H. Sargent, “Stable all-optical limiting in nonlinear periodic structures. II. Computations,” J. Opt. Soc. Am. B 19, 1873-1889 (2002). [CrossRef]
  28. W. N. Ye, L. Brzozowski, E. H. Sargent, and D. Pelinovsky, “Stable all-optical limiting in nonlinear periodic structures. III. Nonsolitonic pulse propagation,” J. Opt. Soc. Am. B 20, 695-705 (2003). [CrossRef]
  29. H. Zou, G. Q. Liang, and H. Z. Wang, “Efficient all-optical dual channel switches, logic gates, half-adder, and half subtracter in one-dimensional photonic crystal heterostructure,” J. Opt. Soc. Am. B 25, 351-360 (2008). [CrossRef]
  30. E. Puddu, A. Allevi, A. Andreoni, and M. Bondani, “All-optical logic operations by means of two interlinked χ(2) interaction in a single crystal,” J. Opt. Soc. Am. B 21, 1839-1847 (2004). [CrossRef]
  31. A. Shinya, S. Mitsugi, T. Tanabe, M. Notomi, I. Yokohama, H. Takara, and S. Kawanishi, “All-optical flip-flop circuit composed of coupled two-port resonant tunneling filter in two dimensional photonic crystal slab,” Opt. Express 14, 1230-1235 (2006). [CrossRef] [PubMed]
  32. Z.-H. Zhu, W.-M. Ye, J.-R. Ji, X.-D. Yuan, and C. Zen, “High-contrast light-by-light switching and AND gate based on nonlinear photonic crystals,” Opt. Express 14, 1783-1788 (2006). [CrossRef] [PubMed]
  33. C. M. Reinke, A. Jafarpour, B. Momeni, M. Soltani, S. Khorasani, A. Adibi, Y. Xu, and R. K. Lee, “Nonlinear finite-difference time-domain method for the simulation of anisotropic, χ(2), and χ(3) optical effects,” J. Lightwave Technol. 24, 624-634 (2006). [CrossRef]
  34. C. M. Reinke, A. Jafarpour, B. Momeni, M. Soltani, S. Khorasani, A. Adibi, Y. Xu, and R. K. Lee, “Design of highly efficient optical diodes based on the dynamics of nonlinear photonic crystal molecules,” J. Opt. Soc. Am. B 23, 2434-2440 (2006). [CrossRef]
  35. N. C. Panoiu, M. Bahl, and R. M. Osgood, Jr., “Ultrafast optical tuning of a superprism effect in nonlinear photonic crystals,” J. Opt. Soc. Am. B 21, 1500-1508 (2004). [CrossRef]
  36. C. Grillet, C. Smith, D. Freeman, S. Madden, B. Luther-Davies, E. C. Magi, D. J. Moss, and B. J. Eggleton, “Efficient coupling to chalcogenide glass photonic crystal waveguides via silica optical fiber nanowires,” Opt. Express 14, 1070-1078 (2006). [CrossRef] [PubMed]
  37. E. P. Kosmidou and T. D. Tsiboukis, “An FDTD analysis of photonic crystal waveguides comprising third-order nonlinear materials,” Opt. Quantum Electron. 35, 931-946 (2003). [CrossRef]
  38. A. E. Miroshnichenko and Y. S. Kivshar, “Sharp bends in photonic crystal waveguides as nonlinear Fano resonators,” Opt. Express 13, 3969-3976 (2005). [CrossRef] [PubMed]
  39. E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. E. Lamont, D. I. Yeom, and B. J. Eggleton, “Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers,” Opt. Express 15, 10324-10329 (2007). [CrossRef] [PubMed]
  40. S. Mookherjea and A. Yariv, “Kerr-stabilized super-resonant modes in coupled-resonator optical waveguides,” Phys. Rev. E 66, 046610 (2002). [CrossRef]
  41. J. Wang, J. Sun, and Q. Sun, “Experimental observation of a 1.5 μm band wavelength conversion and logic NOT gate at 40 Gbit/s based on sum-frequency generation,” Opt. Lett. 31, 1711-1713 (2006). [CrossRef] [PubMed]
  42. J. Wang, J. Sun, and Q. Sun, “Proposal for all-optical switchable OR/XOR logic gates using sum-frequency generation,” IEEE Photon. Technol. Lett. 19, 541-543 (2007). [CrossRef]
  43. J. Wang, J. Sun, and Q. Sun, “Single-PPLN-based simultaneous half-adder, half-subtracter, and OR logic gate: proposal and simulation,” Opt. Express 15, 1690-1699 (2007). [CrossRef] [PubMed]
  44. J. Wang, J. Sun, Q. Sun, D. Wang, X. Zhang, D. Huang, and M. M. Fejer, “PPLN-based flexible optical logic AND gate,” IEEE Photon. Technol. Lett. 20, 211-213 (2008). [CrossRef]
  45. J. Wang, J. Sun, D. Wang, X. Zhang, D. Huang, and M. M. Fejer, “Optical phase erasure and its application to format conversion through cascaded second-order processes in periodically poled lithium niobate,” Opt. Lett. 33, 1804-1806 (2008). [CrossRef] [PubMed]
  46. J. Wang, J. Sun, X. Zhang, D. Liu, and D. Huang, “Proposal and simulation for all-optical format conversion between differential phase-shift keying signals based on cascaded second-order nonlinearities,” Opt. Commun. 281, 5019-5024 (2008). [CrossRef]
  47. J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, “Dual-channel-output all-optical logic AND gate at 20 Gbit/s based on cascaded second-order nonlinearity in PPLN waveguide,” Electron. Lett. 43, 940-941 (2007). [CrossRef]
  48. J. Wang, J. Sun, X. Zhang, and D. Huang, “PPLN-based all-optical 40 Gbit/s three-input logic AND gate for both NRZ and RZ signals,” Electron. Lett. 44, 413-414 (2008). [CrossRef]
  49. I. S. Maksymov, L. F. Marsal, and J. Pallares, “Finite-difference time-domain analysis of band structures in one-dimensional Kerr-nonlinear photonic crystals,” Opt. Commun. 239, 213-222 (2004). [CrossRef]
  50. Q. Liu, X. Zhao, F. Gan, J. Mi, and S. Qian, “Femtosecond optical Kerr effect study of amorphous chalcogenide films,” J. Non-Cryst. Solids 352, 2351-2354 (2006). [CrossRef]
  51. R. L. Sutherland, D. G. Mclean, and S. Kirkpatrick, Handbook of Nonlinear Optics, 2nd ed. (Dekker, 2003). [CrossRef]
  52. J. H. Greene and A. Taflove, “General vector auxiliary differential equation finite-difference time-domain method for nonlinear optics,” Opt. Express 14, 8305-8310 (2006). [CrossRef] [PubMed]
  53. A. Taflov and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time Domain Method, 2nd ed. (Artech House, 2000).
  54. G. Vijaya Prakash, M. Cazzanelli, Z. Gaburro, L. Pavesi, G. Franzo, F. Priolo, and F. Iacona, “Nonlinear optical properties of silicon nanocrystals grown by plasma-enhanced chemical vapor deposition,” J. Appl. Phys. 91, 4607-4610 (2002). [CrossRef]
  55. G. Vijaya Prakash, M. Cazzanelli, Z. Gaburro, L. Pavesi, F. Iacona, G. Franzò, and F. Priolo, “Linear and nonlinear optical properties of plasma-enhanced chemical-vapour deposition grown silicon nanocrystals,” J. Mod. Opt. 49, 719-730 (2002). [CrossRef]
  56. S. Hernández, P. Pellegrino, A. Martínez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, “Linear and nonlinear optical properties of Si nano crystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition,” J. Appl. Phys. 103, 064309 (2008). [CrossRef]
  57. C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15, 5976-5990 (2007). [CrossRef] [PubMed]
  58. R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic, 2003).
  59. M. Djavid, A. Ghaffari, F. Monifi, and M. S. Abrishamian, “Photonic crystal power dividers using L-shaped based on ring resonators,” J. Opt. Soc. Am. B 25, 1231-1235 (2008). [CrossRef]
  60. S. H. Jeong, N. Yamamoto, J. Sugisaka, M. Okano, and K. Komori, “GaAs-based two-dimensional photonic crystal slab ring resonator consisting of a directional coupler and bent waveguides,” J. Opt. Soc. Am. B 24, 1951-1959 (2007). [CrossRef]
  61. J. K. S. Poon, Y. Xu, and A. Yariv, “Designing coupled-resonator optical waveguide delay lines,” J. Opt. Soc. Am. B 21, 1665-1673 (2004). [CrossRef]
  62. N. C. Panoiu, M. Bahl, and R. M. Osgood, Jr., “All-optical tunability of a nonlinear photonic crystal channel drop filter,” Opt. Express 12, 1605-1610 (2004). [CrossRef] [PubMed]
  63. I. S. Maksymov, L. F. Marsal and J. Pallarès, “An FDTD analysis of nonlinear photonic crystal waveguides,” Opt. Quantum Electron. 38, 149-160 (2006). [CrossRef]
  64. J. B. Abad, A. Rodriguez, P. Bermel, S. G. Johnson, J. D. Joannopoulos, and M. Soljaciić, “Enhanced nonlinear optics in photonic-crystal microcavities,” Opt. Express 15, 16161-16176 (2007). [CrossRef]
  65. Z. Qiang, W. Z. Richard, and A. Soref, “Optical add-drop filters based on photonic crystal ring resonators,” Opt. Express 15, 1823-1831 (2007). [CrossRef] [PubMed]
  66. T. Stomeo, V. Errico, A. Salhi, A. Passaseo, R. Cingolani, A. D'Orazio, M. De Sario, V. Marrocco, V. Petruzzelli, F. Prudenzano, and M. De Vittorio, “Design and fabrication of active and passive photonic crystal resonators,” Microelectron. Eng. 83, 1823-1825 (2006). [CrossRef]
  67. L. Chen and E. Towe, “Design of high-Q microcavities for proposed two-dimensional electrically pumped photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 12, 117-123 (2006). [CrossRef]
  68. S.-H. Kim and Y.-H. Lee, “Symmetry relations of two-dimensional photonic crystal cavity modes,” IEEE J. Quantum Electron. 39, 1081-1085 (2003). [CrossRef]
  69. Y. Lin and E. Chow, “Direct measurement of the quality factor in a two-dimensional photonic-crystal microcavity,” Opt. Lett. 26, 1903-1905 (2001). [CrossRef]
  70. J. Heebner, N. N. Lepeshkin, A. Schweinsberg, G. W. Wicks, R. W. Boyd, R. Grover, and P.-T. Ho, “Enhanced linear and nonlinear optical phase response of AlGaAs microring resonators,” Opt. Lett. 29, 769-71 (2004). [CrossRef] [PubMed]
  71. M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, H. Taniyama, S. Mitsugi, and M. Morita, “Nonlinear and adiabatic control of high-Q photonic crystal nanocavities,” Opt. Express 15, 17458-17481 (2007). [CrossRef] [PubMed]
  72. M. Mazidi and J. G. Mazidi, The 8051 Microcontroller and Embedded Systems (Prentice-Hall, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited