OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 1 — Jan. 1, 2009
  • pp: 107–112

Preparation and third-order optical nonlinearity of gold nanoparticles incorporated mesoporous Ti O 2 thin films

Fangming Cui, Zile Hua, Qianjun He, Jiangtian Li, Limin Guo, Xiangzhi Cui, Peng Jiang, Chenyang Wei, Weimin Huang, Wenbo Bu, and Jianlin Shi  »View Author Affiliations

JOSA B, Vol. 26, Issue 1, pp. 107-112 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (342 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A kind of Au nanoparticle (NP) containing 2D hexagonal mesoporous Ti O 2 thin films (MTTFs) has been successfully synthesized through a deposition–precipitation method. The Au NPs show uniform size distribution and the Au content within the MTTFs is measured to be 7.49 wt. % . The third-order nonlinear optical refractive index of the Au NPs contained MTTFs has been measured by the Z-scan technique at 1064 nm . The absolute value of nonlinear refractive index ( n 2 ) and third-order nonlinear susceptibility ( χ ( 3 ) ) were calculated to be 2.64 × 10 7 and 6.32 × 10 8 esu , respectively. The high nonlinearity of the composite thin films can be attributed to the intraband transition of electrons near the Fermi surface in well-dispersed Au NPs confined in mesoporous channels and the high linear refractive index of the nanocrystalline anatase framework.

© 2008 Optical Society of America

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(310.6860) Thin films : Thin films, optical properties
(160.4236) Materials : Nanomaterials

ToC Category:

Original Manuscript: July 21, 2008
Revised Manuscript: September 15, 2008
Manuscript Accepted: October 8, 2008
Published: December 16, 2008

Fangming Cui, Zile Hua, Qianjun He, Jiangtian Li, Limin Guo, Xiangzhi Cui, Peng Jiang, Chenyang Wei, Weimin Huang, Wenbo Bu, and Jianlin Shi, "Preparation and third-order optical nonlinearity of gold nanoparticles incorporated mesoporous TiO2 thin films," J. Opt. Soc. Am. B 26, 107-112 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. S. Chen and D. W. Goodman, “The structure of catalytically active gold on titania,” Science 306, 252-255 (2004). [CrossRef] [PubMed]
  2. M. Jakob, H. Levanon, and P. V. Kamat, “Charge distribution between UV-irradiated TiO2 and gold nanoparticles: determination of shift in the Fermi level,” Nano Lett. 3, 353-358 (2003). [CrossRef]
  3. J. Chou and E. W. McFarland, “Direct propylene epoxidation on chemically reduced Au nanoparticles supported on titania,” Chem. Commun. (Cambridge) 2004, 1648-1649 (2004). [CrossRef]
  4. H. B. Liao, R. F. Xiao, H. Wang, K. S. Wong, and G. K. L. Wong, “Large third-order optical nonlinearity in Au:TiO2 composite films measured on a femtosecond time scale,” Appl. Phys. Lett. 72, 1817-1820 (1998). [CrossRef]
  5. S. Cho, S. Lee, S.-g. Oh, S. J. Park, W. M. Kim, B.-k. Cheong, M. Chung, K. B. Song, T. S. Lee, and S. G. Kim, “Optical properties of Au nanocluster embedded dielectric films,” Thin Solid Films 377-378, 97-102 (2000). [CrossRef]
  6. C. Zhang, Y. Liu, G. You, B. Li, J. Shi, and S. Qian, “Ultrafast nonlinear optical response of Au:TiO2 composite nanoparticle films,” Physica B 357, 334-339 (2005).
  7. M. Kyoung and M. Lee, “Z-scan studies on the third-order optical nonlinearity of Au nanoparticles embedded in TiO2,” Bull. Korean Chem. Soc. 21, 26-28 (2000).
  8. G. Ma, J. He, and S.-H. Tang, “Femtosecond nonlinear birefringence and nonlinear dichroism in Au:TiO2 composite films,” Phys. Lett. A 306, 348-352 (2003). [CrossRef]
  9. Y. Yang, J. Shi, S. Dai, X. Zhao, and X. Wang, “High third-order non-resonant optical nonlinearity of surface modified CdS quantum dots embedded in BaTiO3,” Thin Solid Films 437, 217-222 (2003). [CrossRef]
  10. Y. Yang, J. Shi, H. Chen, S. Dai, and Y. Liu, “Enhanced off-resonant optical nonlinearity of Au@CdS core-shell nanoparticles embedded in BaTiO3 thin films,” Chem. Phys. Lett. 370, 1-6 (2003). [CrossRef]
  11. P. C. A. Alberius, K. L. Frindell, R. C. Hayward, E. J. Kramer, G. D. Stucky, and B. F. Chmelka, “General predictive syntheses of cubic, hexagonal, and lamellar silica and titania mesostructured thin films,” Chem. Mater. 14, 3284-3294 (2002). [CrossRef]
  12. D. Grosso, G. J. de A. A. Soler-Illia, F. Babonneau, C. Sanchez, P.-A. Albouy, A. Brunet-Bruneau, and A. R. Balkenende, “Highly organized mesoporous titania thin films showing mono-oriented 2D hexagonal channels,” Adv. Mater. (Weinheim, Ger.) 13, 1085-1090 (2001). [CrossRef]
  13. E. L. Crepaldi, G. J. de A. A. Soler-Illia, D. Grosso, F. Cagnol, F. Ribot, and C. Sanchez, “Controlled formation of highly organized mesoporous titania thin films: from mesostructured hybrids to mesoporous nanoanatase TiO2,” J. Am. Chem. Soc. 125, 9770-9786 (2003). [CrossRef] [PubMed]
  14. Y. Zhang, A. H. Yuwono, J. Li, and J. Wang, “Highly dispersed gold nanoparticles assembled in mesoporous titania films of cubic configuration,” Microporous Mesoporous Mater. 110242-249 (2007). [CrossRef]
  15. K. M. Coakley, Y. Liu, M. D. McGehee, K. L. Frindell, and G. D. Stucky, “Infiltrating semiconducting polymers into self-assembled mesoporous titania films for photovoltaic applications,” Adv. Funct. Mater. 13, 301-306 (2003). [CrossRef]
  16. R. Zanella, S. Giorgio, C. R. Henry, and C. Louis, “Alternative methods for the preparation of gold nanoparticles supported on TiO2,” J. Phys. Chem. B 106, 7634-7642 (2002). [CrossRef]
  17. E. E. Stangland, B. Taylor, R. P. Andres, and W. Nicholas Delgass, “Direct vapor phase propylene epoxidation over deposition-precipitation gold-titania catalysts in the presence of H2/O2: effects of support, neutralizing agent, and pretreatment,” J. Phys. Chem. B 109, 2321-2330 (2005). [CrossRef]
  18. H. Zhu, Z. Pan, B. Chen, B. Lee, S. M. Mahurin, S. H. Overbury, and S. Dai, “Synthesis of ordered mixed titania and silica mesostructured monoliths for gold catalysts,” J. Phys. Chem. B 108, 2038-2044 (2004). [CrossRef]
  19. P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, and G. D. Stucky, “Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework,” Chem. Mater. 11, 2813-2826 (1999). [CrossRef]
  20. D. Zhao, P. Yang, N. Melosh, J. Feng, B. F. Chmelka, and G. D. Stucky, “Continuous mesoporous silica films with highly ordered large pore structures,” Adv. Mater. (Weinheim, Ger.) 10, 1380-1385 (1998). [CrossRef]
  21. L. Kavan, J. Rathouský, M. Grätzel, V. Shklover, and A. Zukal, “Surfactant-templated TiO2 (anatase): characteristic features of lithium insertion electrochemistry in organized nanostructures,” J. Phys. Chem. B 104, 12012-12020 (2000). [CrossRef]
  22. S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410-8426 (1999). [CrossRef]
  23. R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Characterization of nonlinear optical parameters of copper- and silver-doped silica glasses at λ=1064 nm,” Phys. Status Solidi B 241, 935-944 (2004). [CrossRef]
  24. R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Nonlinear optical susceptibilities of copper- and silver-doped silicate glasses in the ultraviolet range,” Phys. Status Solidi B 238, R5-R7 (2003). [CrossRef]
  25. J.-L. Gu, J.-L. Shi, G.-J. You, L.-M. Xiong, S.-X. Qian, Z.-L. Hua, and H.-R. Chen, “Incorporation of highly dispersed gold nanoparticles into the pore channels of mesoporous silica thin films and their ultrafast nonlinear optical response,” Adv. Mater. (Weinheim, Ger.) 17, 557-560 (2005). [CrossRef]
  26. A. H. Yuwono, J. Xue, J. Wang, H. I. Elim, W. Ji, Y. Li, and T. J. White, “Transparent nanohybrids of nanocrystalline TiO2 in PMMA with unique nonlinear optical behavior,” J. Mater. Chem. 13, 1475-1479 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited