OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry Van Driel
  • Vol. 26, Iss. 1 — Jan. 1, 2009
  • pp: 121–124

Theoretical analysis and experimental demonstration of resonant light scattering from metal nanostrips on quartz

Jesper Jung, Thomas Søndergaard, Jonas Beermann, Alexandra Boltasseva, and Sergey I. Bozhevolnyi  »View Author Affiliations


JOSA B, Vol. 26, Issue 1, pp. 121-124 (2009)
http://dx.doi.org/10.1364/JOSAB.26.000121


View Full Text Article

Enhanced HTML    Acrobat PDF (534 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using the Green’s tensor area integral equation method and reflection spectroscopy, resonant light scattering from rectangular gold nanostrips on quartz substrates fabricated with electron-beam lithography is analyzed theoretically and demonstrated experimentally. Theory and experiments are compared and found in a good agreement. Design curves presenting the scattering resonance wavelength as a function of the nanostrip width allow one, by carefully choosing the strip width and thickness, to realize the resonance at a given wavelength in a broad wavelength spectrum ranging from the visible ( 600 nm ) to the near infrared including telecommunication wavelengths ( 1600 nm ) .

© 2008 Optical Society of America

OCIS Codes
(290.0290) Scattering : Scattering
(290.5850) Scattering : Scattering, particles
(300.6550) Spectroscopy : Spectroscopy, visible

ToC Category:
Scattering

History
Original Manuscript: October 27, 2008
Manuscript Accepted: November 4, 2008
Published: December 18, 2008

Citation
Jesper Jung, Thomas Søndergaard, Jonas Beermann, Alexandra Boltasseva, and Sergey I. Bozhevolnyi, "Theoretical analysis and experimental demonstration of resonant light scattering from metal nanostrips on quartz," J. Opt. Soc. Am. B 26, 121-124 (2009)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-26-1-121


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641-648 (2007). [CrossRef]
  2. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowire as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005). [CrossRef] [PubMed]
  3. K. Imura, T. Nagahara, and H. Okamoto, “Near-field optical imaging of plasmon modes in gold nanorods,” J. Chem. Phys. 122, 154701 (2005). [CrossRef] [PubMed]
  4. F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, and S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett. 89, 253104 (2006). [CrossRef]
  5. T. Laroche and C. Girard, “Near-field optical properties of single plasmonic nanowires,” Appl. Phys. Lett. 89, 233119 (2006). [CrossRef]
  6. P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607-1609 (2005). [CrossRef] [PubMed]
  7. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007). [CrossRef] [PubMed]
  8. H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96, 097401 (2006). [CrossRef] [PubMed]
  9. Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: analysis of optical properties,” Phys. Rev. B 75, 035411 (2007). [CrossRef]
  10. P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101, 116805 (2008). [CrossRef] [PubMed]
  11. G. Lèvêque and O. J. F. Martin, “Tunable composite nanoparticle for plasmonics,” Opt. Lett. 31, 2750-2752 (2006). [CrossRef] [PubMed]
  12. G. Lèvêque and O. J. F. Martin, “Optical interactions in a plasmonic particle coupled to a metallic film,” Opt. Express 14, 9971-9981 (2006). [CrossRef] [PubMed]
  13. T. Søndergaard and S. I. Bozhevolnyi, “Slow-plasmon resonant nanostructures: scattering and field enhancements,” Phys. Rev. B 75, 073402 (2007). [CrossRef]
  14. T. Søndergaard and S. I. Bozhevolnyi, “Metal nano-strip optical resonators,” Opt. Express 15, 4198-4204 (2007). [CrossRef] [PubMed]
  15. G. D. Valle, T. Søndergaard, and S. I. Bozhevolnyi, “Plasmon-polariton nano-strip resonators: from visible to infra-red,” Opt. Express 16, 6867-6876 (2008). [CrossRef] [PubMed]
  16. T. Søndergaard and S. I. Bozhevolnyi, “Strip and gap plasmon polariton optical resonators,” Phys. Status Solidi B 245, 9-19 (2008). [CrossRef]
  17. T. Søndergaard, J. Jung, S. I. Bozhevolnyi, and G. D. Valle, “Theoretical analysis of gold nano-strip gap plasmon resonators,” New J. Phys. 10, 105008 (2008). [CrossRef]
  18. J. Jung and T. Søndergaard, “Theoretical analysis of surface-plasmon-polariton resonators in free space and close to an interface,” Proc. SPIE 6988, 69881N (2008). [CrossRef]
  19. J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nano-resonators: scattering enhancement and launching of surface plasmon polaritons,” (accepted for publication in Phys. Rev. B).
  20. T. Søndergaard, J. Beermann, A. Boltasseva, and S. I. Bozhevolnyi, “Slow-plasmon resonant-nanostrip antennas: analysis and demonstration,” Phys. Rev. B 77, 115420 (2008). [CrossRef]
  21. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  22. T. Søndergaard, “Modeling of plasmonic nanostructures: Green's function integral equation methods,” Phys. Status Solidi B 244, 3448-3462 (2007). [CrossRef]
  23. J. Jung and T. Søndergaard, “Green's function surface integral equation method for theoretical analysis of scatterers close to a metal interface,” Phys. Rev. B 77, 245310 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited