OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 1 — Jan. 1, 2009
  • pp: 129–132

Controlled generation of four-photon polarization-entangled decoherence-free states with conventional photon detectors

Yan Xia, Jie Song, He-Shan Song, and Shou Zhang  »View Author Affiliations

JOSA B, Vol. 26, Issue 1, pp. 129-132 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (101 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a protocol for the controlled generation of four-photon polarization-entangled decoherence-free states with a certain success probability. The proposed setup involves simple linear optical elements, two single-photon polarzaition entangled states, a pair of two-photon polarization entangled states, and conventional photon detectors that only distinguish the vacuum and nonvacuum Fock number states. This makes the protocol more realizable in experiments.

© 2008 Optical Society of America

OCIS Codes
(000.6800) General : Theoretical physics
(270.5565) Quantum optics : Quantum communications
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: May 30, 2008
Revised Manuscript: September 7, 2008
Manuscript Accepted: October 27, 2008
Published: December 19, 2008

Yan Xia, Jie Song, He-Shan Song, and Shou Zhang, "Controlled generation of four-photon polarization-entangled decoherence-free states with conventional photon detectors," J. Opt. Soc. Am. B 26, 129-132 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145-195 (2002). [CrossRef]
  2. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895-1899 (1993). [CrossRef] [PubMed]
  3. C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881-2884 (1992). [CrossRef] [PubMed]
  4. F. G. Deng and G. L. Long, “Controlled order rearrangement encryption for quantum key distribution,” Phys. Rev. A 68, 042315 (2003). [CrossRef]
  5. X. B. Wang, “Quantum key distribution with two-qubit quantum codes,” Phys. Rev. Lett. 92, 077902 (2004). [CrossRef] [PubMed]
  6. C. H. Bennett, D. P. DiCincenzo, P. W. Shor, J. A. Smolin, B. M. Terhal, and W. K. Wotters, “Remote state preparation,” Phys. Rev. Lett. 87, 077902 (2001). [CrossRef] [PubMed]
  7. P. W. Shor, “Scheme for reducing decoherence in quantum computer memory,” Phys. Rev. A 52, R2493-R2496 (1995). [CrossRef] [PubMed]
  8. A. M. Steane, “Error correcting codes in quantum theory,” Phys. Rev. Lett. 77, 793-797 (1996). [CrossRef] [PubMed]
  9. R. Laflamme, C. Miquel, J. P. Paz, and W. H. Zurek, “Perfect quantum error correcting code,” Phys. Rev. Lett. 77, 198-201 (1996). [CrossRef] [PubMed]
  10. L. Viola, E. Knill, and S. Lloyd, “Dynamical decoupling of open quantum systems,” Phys. Rev. Lett. 82, 2417-2421 (1999). [CrossRef]
  11. J. Kempe, D. Bacon, D. A. Lidar, and K. B. Whaley, “Theory of decoherence-free fault-tolerant universal quantum computation,” Phys. Rev. A 63, 042307 (2001). [CrossRef]
  12. S. D. Bartlett, T. Rudolph, and R. W. Spekkens, “Classical and quantum communication without a shared reference frame,” Phys. Rev. Lett. 91, 027901 (2003). [CrossRef] [PubMed]
  13. J. C. Boileau, D. Gottesman, R. Laflamme, D. Poulin, and R. W. Spekkens, “Robust polarization-based quantum key distribution over a collective-noise channel,” Phys. Rev. Lett. 92, 017901 (2004). [CrossRef] [PubMed]
  14. A. Cabello, “Greenberger-Horne-Zeilinger-like proof of Bells theorem involving observers who do not share a reference frame,” Phys. Rev. A 68, 042104 (2003). [CrossRef]
  15. A. Cabello, “Bells theorem without inequalities and without alignments,” Phys. Rev. Lett. 91, 230403 (2004). [CrossRef]
  16. G. M. Palma, K. A. Suominen, and A. K. Ekert, “Quantum computers and dissipation,” arXiv:quant-ph/9702001v/.
  17. L. M. Duan and G. C. Guo, “Preserving coherence in quantum computation by pairing quantum bits,” Phys. Rev. Lett. 79, 1953-1956 (1997). [CrossRef]
  18. P. Zanardi and M. Rasetti, “Noiseless quantum codes,” Phys. Rev. Lett. 79, 3306-3309 (1997). [CrossRef]
  19. J. B. Altepeter, P. G. Hadley, S. M. Wendelken, A. J. Berglund, and P. G. Kwiat, “Experimental investigation of a two-qubit decoherence-free subspace,” Phys. Rev. Lett. 92, 147901 (2004). [CrossRef] [PubMed]
  20. M. Bourennane, M. Eibl, S. Gaertner, C. Kurtsiefer, A. Cabello, and H. Weinfurter, “Decoherence-free quantum information processing with four-photon entangled states,” Phys. Rev. Lett. 92, 107901 (2004). [CrossRef] [PubMed]
  21. X. B. Zou, J. Shu, and G. C. Guo, “Simple scheme for generating four-photon polarization-entangled decoherence-free states using spontaneous parametric down-conversions,” Phys. Rev. A 73, 054301 (2006). [CrossRef]
  22. Y. X. Gong, X. B. Zou, X. L. Niu, J. Li, Y. F. Huang, and G. C. Guo, “Generation of arbitrary four-photon polarization-entangled decoherence-free states,” Phys. Rev. A 77, 042317 (2008). [CrossRef]
  23. T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Probabilistic quantum logic operations using polarizing beam splitters,” Phys. Rev. A 64, 062311 (2001). [CrossRef]
  24. T. B. Pittman, B. C. Jacobs, J. D. Franson, “Probabilistic quantum encoder for single-photon qubits,” Phys. Rev. A 69, 042306 (2004). [CrossRef]
  25. X. B. Zou, S. L. Zhang, K. L. Li, and G. C. Guo, “Linear optical implementation of the two-qubit controlled phase gate with conventional photon detectors,” Phys. Rev. A 75, 034302 (2007). [CrossRef]
  26. X. B. Zou, K. Li, and G. C. Guo, “Linear optical scheme for direct implementation of a nondestructive N-qubit controlled phase gate,” Phys. Rev. A 74, 044305 (2006). [CrossRef]
  27. W. T. Liu, W. Wu, B. Q. Ou, P. X. Chen, C. Z. Li, and J. M. Yuan, “Experimental remote preparation of arbitrary photon polarization states,” Phys. Rev. A 76, 022308 (2007). [CrossRef]
  28. Y. Xia, J. Song, and H. S. Song, “Linear optical protocol for preparation of N-photon Greenberger-Horne-Zeilinger state with conventional photon detectors,” Appl. Phys. Lett. 92, 021128 (2008). [CrossRef]
  29. M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, “Experimental realization of a three-qubit entangled W state,” Phys. Rev. Lett. 92, 077901 (2004). [CrossRef] [PubMed]
  30. J. W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement,” Nature (London) 403, 515-519 (2000). [CrossRef]
  31. D. Bouwmeester, J. W. Pan, M. Daniell, H. Weinfurter, and A. Zeilinger, “Observation of three-photon Greenberger-Horne-Zeilinger entanglement,” Phys. Rev. Lett. 82, 1345-1349 (1999). [CrossRef]
  32. J. W. Pan, M. Daniell, S. Gasparoni, G. Weihs, and A. Zeilinger, “Experimental demonstration of four-photon entanglement and high-fidelity teleportation,” Phys. Rev. Lett. 86, 4435-4438 (2001). [CrossRef] [PubMed]
  33. O. Benson, C. Santori, M. Pelton, and Y. Yanmamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513-2516 (2000). [CrossRef] [PubMed]
  34. N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited