OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 1 — Jan. 1, 2009
  • pp: 176–182

Theoretical study on all-optical magnetic recording using a solid immersion lens

Yaoju Zhang and Jianping Bai  »View Author Affiliations

JOSA B, Vol. 26, Issue 1, pp. 176-182 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (868 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a simple model for performing high-density all-optical magnetic recording using a solid immersion lens. The magnetization distribution in the magneto-optic film placed in the vicinity of the solid immersion lens is studied using the vector diffraction theory and the inverse Faraday effect. Simulation results show that although the transverse components of magnetization are nonzero, the axial component dominates. The magnetization direction of the axial component can be reversed by changing the helicity of the incident circularly polarized laser pulses. For a lower-numerical-aperture (NA) system, a larger and circular magnetization zone is obtained and the deviation angle of magnetization direction departing from the optical axis is smaller in the effective magnetization zone, which is useful to vertical magnetic recording. For a higher-NA system, a smaller magnetization zone is generated, but the three-dimensional magnetization distribution has to be considered.

© 2008 Optical Society of America

OCIS Codes
(210.3810) Optical data storage : Magneto-optic systems
(230.3810) Optical devices : Magneto-optic systems
(260.5430) Physical optics : Polarization

ToC Category:
Optical Data Storage

Original Manuscript: July 23, 2008
Revised Manuscript: October 31, 2008
Manuscript Accepted: November 6, 2008
Published: December 24, 2008

Yaoju Zhang and Jianping Bai, "Theoretical study on all-optical magnetic recording using a solid immersion lens," J. Opt. Soc. Am. B 26, 176-182 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615-2616 (1990). [CrossRef]
  2. B. D. Terris, H. J. Mamin, and D. Ruger, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388-390 (1994). [CrossRef]
  3. L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74, 501-503 (1999). [CrossRef]
  4. M. Yoshita, K. Koyama, M. Baba, and H. Akiyama, “Fourier imaging study of efficient near-field optical coupling in solid immersion fluorescence microscopy,” J. Appl. Phys. 92, 862-865 (2002). [CrossRef]
  5. S. B. Ippolito, S. A. Thorne, M. G. Eraslan, B. B. Goldberg, M. S. Ünlü, and Y. Leblebici, “High spatial resolution subsurface thermal emission microscopy,” Appl. Phys. Lett. 84, 4529-4531 (2004). [CrossRef]
  6. D. Ganic, X. Gan, and M. Gu, “Trapping force and optical lifting under focused evanescent wave illumination,” Opt. Express 12, 5533-5538 (2004). [CrossRef] [PubMed]
  7. M. Gu, S. Kuriakose, and X. Gan, “A single beam near-field laser trap for optical stretching, folding and rotation of erythrocytes,” Opt. Express 15, 1369-1375 (2007). [CrossRef] [PubMed]
  8. I. Ichimura, S. Hayashi, and G. S. Kino, “High-density optical recording using a solid immersion lens,” Appl. Opt. 36, 4339-4348 (1997). [CrossRef] [PubMed]
  9. F. Guo, T. E. Schlesinger, and D. D. Stancil, “Optical field study of near-field optical recording with a solid immersion lens,” Appl. Opt. 39, 324-332 (2000). [CrossRef]
  10. Y. Zhang, H. Xiao, and C. Zhang, “Diffractive super-resolution elements applied to near-field optical data storage with solid immersion lens,” New J. Phys. 6, 75 (2004). [CrossRef]
  11. Y. Zhang and X. Ye, “Three-zone phase-only filter increasing the focal depth of optical storage systems with a solid immersion lens,” Appl. Phys. B 86, 97-103 (2007). [CrossRef]
  12. Y. Zhang, “Optical data storage system with a plano-ellipsoidal solid immersion mirror illuminated directly by a point light source,” Appl. Opt. 45, 8653-8658 (2006). [CrossRef] [PubMed]
  13. Y. Zhang, “Theoretical study of near-field optical storage with a solid immersion lens,” J. Opt. Soc. Am. A 23, 2132-2136 (2006). [CrossRef]
  14. C. H. Back, R. Allenspach, W. Weber, S. S. P. Parkin, D. Weller, E. L. Garwin, and H. C. Siegmann, “Minimum field strength in precessional magnetization reversal,” Science 285, 864-867 (1999). [CrossRef] [PubMed]
  15. R. Gómez-Abal, O. Ney, K. Satitkovitchai, and W. Hübner, “All-optical subpicosecond magnetic switching in NiO(001),” Phys. Rev. Lett. 92, 227402 (2004). [CrossRef] [PubMed]
  16. A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and T. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature 435, 655-657 (2005). [CrossRef] [PubMed]
  17. C. D. Stanciu, A. V. Kimel, F. Hansteen, A. Tsukamoto, A. Itoh, A. Kirilyuk, and Th. Rasing, “Ultrafast spin dynamics across compensation points in ferrimagnetic GdFeCo: the role of angular momentum compensation,” Phys. Rev. B 73, 220402(R) (2006). [CrossRef]
  18. C. A. Perroni and A. Liebsch, “Coherent control of magnetization via inverse Faraday effect,” J. Phys.: Condens. Matter 18, 7063-7078 (2006). [CrossRef]
  19. C. A. Perroni and A. Liebsch, “Magnetization dynamics in dysprosium orthoferrites via the inverse Faraday effect,” Phys. Rev. B 74, 134430 (2006). [CrossRef]
  20. C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and Th. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99, 047601 (2007). [CrossRef] [PubMed]
  21. Y. Zhang and J. Bai, “High-density all-optical magnetic recording using a high-NA lens illuminated by circularly polarized pulse lights,” Phys. Lett. A 372, 6294-6297 (2008). [CrossRef]
  22. V. V. Kruglyak, M. E. Portnoi, and R. J. Hickenc, “Use of the Faraday optical transformer for ultrafast magnetization reversal of nanomagnets,” J. Nanophotonics 1, 013502 (2007). [CrossRef]
  23. A. Rebei and J. Hohlfeld, “The magneto-optical Barnett effect: circularly polarized light induced femtosecond magnetization reversal,” Phys. Lett. A 372, 1915-1918 (2008). [CrossRef]
  24. C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Tsukamoto, A. Itoh, A. Kirilyuk, and Th. Rasing, “Ultrafast interaction of the angular momentum of photons with spins in the metallic amorphous alloy GdFeCo,” Phys. Rev. Lett. 98, 207401 (2007). [CrossRef] [PubMed]
  25. J. P. van der Ziel, P. S. Pershan, and L. D. Malmstrom, “Optically-induced magnetization resulting from the inverse Faraday effect,” Phys. Rev. Lett. 15, 190-193 (1965). [CrossRef]
  26. Y. Zhang, X. Ye, and J. Chen, “Converging spherical wave propagation in a hemispherical solid lens,” J. Opt. A, Pure Appl. Opt. 8, 578-583 (2006). [CrossRef]
  27. A. S. van de Nes, L. Billy, S. F. Pereira, and J. J. M. Braat, “Calculation of the vectorial field distribution in a stratified focal region of a high numerical aperture imaging system,” Opt. Express 12, 1281-1295 (2004). [CrossRef] [PubMed]
  28. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London, Ser. A 253, 358-379 (1959). [CrossRef]
  29. L. E. Helseth, “Roles of polarization, phase and amplitude in solid immersion lens systems,” Opt. Commun. 191, 161-172 (2001). [CrossRef]
  30. B. Bomzon, M. Gu, and J. Shamir, “Angular momentum and geometrical phases in tight-focused circularly polarized plane waves,” Appl. Phys. Lett. 89, 241104 (2006). [CrossRef]
  31. R. Hertel, “Theory of the inverse Faraday effect in metals,” J. Magn. Magn. Mater. 303, L1-L4 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited