OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 1 — Jan. 1, 2009
  • pp: 183–188

Modulational instability in lossless fibers with saturable delayed nonlinear response

G. L. da Silva, Iram Gleria, M. L. Lyra, and A. S.B. Sombra  »View Author Affiliations

JOSA B, Vol. 26, Issue 1, pp. 183-188 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (154 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the modulational instability of optical pulses propagating in a lossless fiber where both effects of relaxation and saturation of the nonlinearity are taken simultaneously into account. The saturation of the nonlinearity is incorporated in the relaxation dynamics of the Kerr response. We calculate the exact dispersion relation for harmonic perturbations over the stationary solution. In the anomalous dispersive regime, the gain spectrum exhibits two bands in the fast relaxation regime. The low energy band is reduced by the saturation of the nonlinearity but is roughly insensitive to the nonlinearity response time. The high energy band is mainly due to the Raman response. These frequency bands superpose for fast relaxation responses and a new behavior sets up. In the normal dispersive regime, a single instability band sets up associated with the finite response time of the nonlinearity with distinct features for fast and slow nonlinear relaxation.

© 2008 Optical Society of America

OCIS Codes
(190.3100) Nonlinear optics : Instabilities and chaos
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

ToC Category:
Nonlinear Optics

Original Manuscript: October 2, 2008
Manuscript Accepted: November 5, 2008
Published: December 24, 2008

G. L. da Silva, Iram Gleria, M. L. Lyra, and A. S. B. Sombra, "Modulational instability in lossless fibers with saturable delayed nonlinear response," J. Opt. Soc. Am. B 26, 183-188 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion,” Appl. Phys. Lett. 23, 142-144 (1973). [CrossRef]
  2. A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. II. Normal dispersion,” Appl. Phys. Lett. 23, 171-172 (1973). [CrossRef]
  3. E. A. Kuznetsov, A. M. Rubenchik, and V. E. Zakharov, “Soliton stability in plasmas and hydrodynamics,” Phys. Rep. 142, 103-165 (1986). [CrossRef]
  4. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  5. K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 24, 2665-2673 (1989). [CrossRef]
  6. E. A. Golovchenko and A. N. Pilipetskii, “Unified analysis of 4-photon mixing, modulational instability, and stimulated Raman-scattering under various polarization conditions in fibers,” J. Opt. Soc. Am. B 11, 92-101 (1994). [CrossRef]
  7. S. B. Cavalcanti and M. L. Lyra, “Modulational instability of ultrashort pulses via a generalized nonlinear Schrödinger equation with deviating argument,” Phys. Lett. A 211, 276-280 (1996). [CrossRef]
  8. C. Cambournac, H. Maillotte, E. Lantz, J. M. Dudley, and M. Chauvet, “Spatiotemporal behavior of periodic arrays of spatial solitons in a planar waveguide with relaxing Kerr nonlinearity,” J. Opt. Soc. Am. B 19, 574-585 (2002). [CrossRef]
  9. M. J. Potasek, “Modulational instability in an extendednonlinear Schrödinger equation,” Opt. Lett. 12, 921-923 (1987). [CrossRef] [PubMed]
  10. X. Liu, J. W. Haus, and S. M. Shahriar, “Modulation instability for a relaxational Kerr medium,” Opt. Commun. 281, 2907-2912 (2008). [CrossRef]
  11. M. Nurhuda and E. van Groesen, “Effects of delayed Kerr nonlinearity and ionization on the filamentary ultrashort laser pulses in air,” Phys. Rev. E 71, 066502 (2005). [CrossRef]
  12. S. Pitois and G. Millot, “Experimental observation of a new modulational instability spectral window induced by fourth-order dispersion in a normally dispersive single-mode optical fiber,” Opt. Commun. 226, 415-422 (2003). [CrossRef]
  13. P. T. Dinda, C. M. Ngabireng, K. Porsezian, and B. Kalithasan, “Modulational instability in optical fibers with arbitrary higher-order dispersion and delayed Raman response,” Opt. Commun. 266, 142-150 (2006). [CrossRef]
  14. M. L. Lyra and A. S. Gouveia Neto, “Saturation effects on modulational instability in non-Kerr-like monomode optical fibers,” Opt. Commun. 108, 117-120 (1994). [CrossRef]
  15. Y. V. Kartashov, A. A. Egorov, A. S. Zelenina, V. A. Vysloukh, and L. Torner, “Stabilization of one-dimensional periodic waves by saturation of the nonlinear response,” Phys. Rev. E 68, 065605(R) (2003). [CrossRef]
  16. M. Stepic, C. E. Ruter, D. Kip, A. Maluckov, and L. Hadzvievski, “Modulational instability in one-dimensional saturable waveguide arrays: comparison with Kerr nonlinearity,” Opt. Commun. 267, 229-235 (2006). [CrossRef]
  17. A. Maluckov, Lj. Hadzievski, N. Lazarides, and G. P. Tsironis, “Left-handed metamaterials with saturable nonlinearity,” Phys. Rev. E 77, 046607 (2008). [CrossRef]
  18. C. P. Jisha, V. C. Kuriakose, and K. Porsezian, “Modulational instability and beam propagation in photorefractive polymer,” J. Opt. Soc. Am. B 25, 674-679 (2008). [CrossRef]
  19. S. Ambomo, C. M. Ngabireng, P. Tchofo Dinda, A. Labruyère, K. Porsezian, and B. Kalithasan, “Critical behavior with dramatic enhancement of modulational instability gain in fiber systems with periodic variation dispersion,” J. Opt. Soc. Am. B 25, 425-433 (2008). [CrossRef]
  20. S. C. Wen, W. H. Su, H. Zhang, X. Q. Fu, L. J. Qian, and D. Y. Fan, “Influence of higher-order dispersions and Raman delayed response on modulation instability in microstructured fibres,” Chin. Phys. Lett. 20, 852-854 (2003). [CrossRef]
  21. S. Gatz and J. Herrmann, “Soliton propagation in materials with saturable nonlinearity,” J. Opt. Soc. Am. B 8, 2296-2302 (1991). [CrossRef]
  22. G. I. Stegeman, J. Ariyasu, C. T. Seaton, T. P. Chen, and J. V. Moloney, “Nonlinear thin-film guided-waves in non-Kerr media,” Appl. Phys. Lett. 47, 1254-1256 (1985). [CrossRef]
  23. V. E. Wood, E. D. Evans, and R. P. Kenan, “Soluble saturable refractive-index model,” Opt. Commun. 59, 156-160 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited