OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry Van Driel
  • Vol. 26, Iss. 1 — Jan. 1, 2009
  • pp: 64–79

Comparative investigation of diode pumping for continuous-wave and mode-locked Cr 3 + : Li CAF lasers

Umit Demirbas, Alphan Sennaroglu, Franz X. Kärtner, and James G. Fujimoto  »View Author Affiliations


JOSA B, Vol. 26, Issue 1, pp. 64-79 (2009)
http://dx.doi.org/10.1364/JOSAB.26.000064


View Full Text Article

Enhanced HTML    Acrobat PDF (1096 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Cr 3 + doped colquiriites are promising solid-state gain media for developing inexpensive and highly efficient tunable continuous-wave (cw) and femtosecond lasers. Among Cr 3 + doped colquiriites, Cr 3 + : Li CAF has superior thermal properties enabling high-power operation with standard laser cavities. In this study we present detailed laser experiments with Cr 3 + : Li CAF , which achieve laser performance approaching that of the much more expensive Ti:sapphire laser technology. Inexpensive, new, multimode ( 1.5 W ) and single-mode ( 150 mW ) diode lasers were used as pump sources. With multimode diode pumping, cw output powers exceeding 1 W and mode-locked pulse energies as high as 2.8 nJ were obtained. Using single-mode diode pumping, up to 280 mW of cw output power with 54% slope efficiency and continuous tuning between 765 and 865 nm were demonstrated. In cw mode-locking, 72 fs , 1.4 nJ pulses were obtained, and an electrical-to-optical conversion efficiency of 7.8% was demonstrated.

© 2008 Optical Society of America

OCIS Codes
(140.3460) Lasers and laser optics : Lasers
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.3600) Lasers and laser optics : Lasers, tunable
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.5680) Lasers and laser optics : Rare earth and transition metal solid-state lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: June 25, 2008
Revised Manuscript: September 22, 2008
Manuscript Accepted: October 12, 2008
Published: December 15, 2008

Citation
Umit Demirbas, Alphan Sennaroglu, Franz X. Kärtner, and James G. Fujimoto, "Comparative investigation of diode pumping for continuous-wave and mode-locked Cr3+:LiCAF lasers," J. Opt. Soc. Am. B 26, 64-79 (2009)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-26-1-64


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, “Laser performance of LiSrAIF6:Cr3+,” J. Appl. Phys. 66, 1051-1056 (1989). [CrossRef]
  2. S. A. Payne, L. K. Smith, R. J. Beach, B. H. T. Chai, J. H. Taasano, L. D. DeLoach, W. L. Kway, R. W. Solarz, and W. F. Krupke, “Properties of Cr:LiSrAIF6 crystals for laser operation,” Appl. Opt. 33, 5526-5536 (1994). [CrossRef] [PubMed]
  3. S. A. Payne, L. L. Chase, and G. D. Wilke, “Optical spectroscopy of the new laser materials, LiSrAlF6:Cr3+: and LiCaAlF6:Cr3+,” J. Lumin. 44, 167-176 (1989). [CrossRef]
  4. L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, and B. H. T. Chai, “Investigation of the laser properties of Cr3+:LiSrGaF6,” IEEE J. Quantum Electron. 28, 2612-2618 (1992). [CrossRef]
  5. B. H. T. Chai, J.-L. Lefaucheur, M. Stalder, and M. Bass, “Cr:LiSr0.8Ca0.2AlF6 tunable laser,” Opt. Lett. 17, 1584-1586 (1992). [CrossRef] [PubMed]
  6. S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+--a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243-2252 (1988). [CrossRef]
  7. R. Scheps, J. F. Myers, and S. A. Payne, “Cw and Q-switched operation of a low threshold Cr+3:LiCaAlF6 laser,” IEEE Photon. Technol. Lett. 2, 626-628 (1990). [CrossRef]
  8. S. A. Payne, L. L. Chase, L. K. Smith, and B. H. T. Chai, “Flashlamp-pumped laser performance of LiCaAlF6:Cr3+,” Opt. Quantum Electron. 22, S259-S268(1990). [CrossRef]
  9. R. Scheps, J. F. Myers, H. B. Serreze, A. Rosenberg, R. C. Morris, and M. Long, “Diode-pumped Cr:LiSrAlF6 laser,” Opt. Lett. 16, 820-822 (1991). [CrossRef] [PubMed]
  10. R. Scheps, “Cr-LiCaAlF6 laser pumped by visible laser diodes,” IEEE J. Quantum Electron. 27, 1968-1970 (1991). [CrossRef]
  11. S. A. Payne, W. F. Krupke, L. K. Smith, W. L. Kway, L. D. DeLoach, and J. B. Tassano, “752 nm wing-pumped Cr:LiSAF laser,” IEEE J. Quantum Electron. 28, 1188-1196 (1992). [CrossRef]
  12. R. Scheps, “Cr-doped solid-state lasers pumped by visible laser diodes,” Opt. Mater. 1, 1-9 (1992). [CrossRef]
  13. R. Scheps, “Laser-diode-pumped Cr:LiSrGaF6 laser,” IEEE Photon. Technol. Lett. 4, 548-550 (1992). [CrossRef]
  14. G. J. Valentine, J. M. Hopkins, P. LozaAlvarez, G. T. Kennedy, W. Sibbett, D. Burns, and A. Valster, “Ultralow-pump-threshold, femtosecond Cr+3:LiSrAlF6 laser pumped by a single narrow-stripe AlGaInP laser diode,” Opt. Lett. 22, 1639-1641 (1997). [CrossRef]
  15. P. Wagenblast, R. Ell, U. Morgner, F. Grawert, and F. X. Kärtner, “Diode-pumped 10-fsCr+3:LiCAF laser,” Opt. Lett. 28, 1713-1715 (2003). [CrossRef] [PubMed]
  16. P. Wagenblast, U. Morgner, F. Grawert, V. Scheuer, G.Angelow, M. J. Lederer, and F. X. Kärtner, “Generation of sub-10-fs pulses from a Kerr-lens mode-locked Cr+3:LiCAF laser oscillator using third-order dispersion-compensating double-chirped mirrors,” Opt. Lett. 27, 1726-1729 (2002). [CrossRef]
  17. S. Uemeura and K. Torizuka, “Generation of 12-fs pulses from a diode-pumped Kerr-lens mode-locked Cr:LiSAF laser,” Opt. Lett. 24, 780-782 (1999). [CrossRef]
  18. I. T. Sorokina, E. Sorokin, E. Wintner, A. Cassanho, H. P. Jenssen, and R. Szipocs, “14-fs pulse generation in Kerr-lens mode-locked prismless Cr:LiSGaF and Cr:LiSAF lasers: observation of pulse self-frequency shift,” Opt. Lett. 22, 1716-1718 (1997). [CrossRef]
  19. S. Uemura and K. Torizuka, “Generation of 10 fs pulses from a diode-pumped Kerr-lens mode-locked Cr: LiSAF laser,” Jpn. J. Appl. Phys., Part 1 39, 3472-3473 (2000). [CrossRef]
  20. U. Demirbas, A. Sennaroglu, F. X. Kärtner, and J. G. Fujimoto, “Highly efficient, low-cost femtosecond Cr+3:LiCAF laser pumped by single-mode diodes,” Opt. Lett. 33, 590-592 (2008). [CrossRef] [PubMed]
  21. A. Isemann and C. Fallnich, “High-power colquiriite lasers with high slope efficiencies pumped by broad-area laser diodes,” Opt. Express 11, 259-264 (2003). [CrossRef] [PubMed]
  22. A. Sanchez, R. E. Fahey, A. J. Strauss, and R. L. Aggarwal, “Room-temperature continuous-wave operation of a Ti-Al2O3 laser,” Opt. Lett. 11, 363-364 (1986). [CrossRef] [PubMed]
  23. P. F. Moulton, “Spectroscopic and laser characteristics of Ti-Al2O3,” J. Opt. Soc. Am. B 3, 125-133 (1986). [CrossRef]
  24. R. Ell, U. Morgner, F. X. Kärtner, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, “Generation of 5 fs pulses and octave-spanning spectra directly from a Ti:sapphire laser,” Opt. Lett. 26, 373-375 (2001). [CrossRef]
  25. L. G. DeShazer and K. W. Kangas, “Extended infrared operation of titanium sapphire laser,” in Conference on Lasers and Electro Optics (CLEO), vol. 14, of 1987 OSA Technical Digest Series (Optical Society of America, 1987), pp. 296-298.
  26. A. Diaspro, G. Chirico, and M. Collini, “Two-photon fluorescence excitation and related techniques in biological microscopy,” Q. Rev. Biophys. 38, 97-166 (2005). [CrossRef]
  27. D. L. Wokosin, V. Centonze, J. G. White, D. Armstrong, G. Robertson, and A. I. Ferguson, “All-solid-state ultrafast lasers facilitate multiphoton excitation fluorescence imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 1051-1065 (1996). [CrossRef]
  28. J. M. Girkin and G. McConnell, “Advances in laser sources for confocal and multiphoton microscopy,” Microsc. Res. Tech. 67, 8-14 (2005). [CrossRef] [PubMed]
  29. E. Sorokin, “Solid-state materials for few-cycle pulse generation and amplification,” in Few-Cycle Laser Pulse Generation and Its Applications, F.X.Kärtner, ed. (Springer-Verlag, 2004), pp. 3-71.
  30. F. Druon, F. Balembois, and P. Georges, “New laser crystals for the generation of ultrashort pulses,” C. R. Phys. 8, 153-164 (2007). [CrossRef]
  31. J. M. Hopkins, G. J. Valentine, B. Agate, A. J. Kemp, U. Keller, and W. Sibbett, “Highly compact and efficient femtosecond Cr:LiSAF lasers,” IEEE J. Quantum Electron. 38, 360-368 (2002). [CrossRef]
  32. S. Uemura and K. Torizuka, “Development of a diode-pumped Kerr-lens mode-locked Cr. LiSAF Laser,” IEEE J. Quantum Electron. 39, 68-73 (2003). [CrossRef]
  33. B. Agate, B. Stormont, A. J. Kemp, C. T. A. Brown, U. Keller, and W. Sibbett, “Simplified cavity designs for efficient and compact femtosecond Cr:LiSAF lasers,” Opt. Commun. 205, 207-213 (2002). [CrossRef]
  34. P. A. Beaud, M. Richardson, and E. J. Miesak, “Multi-terawatt femtosecond Cr:LiSAF laser,” IEEE J. Quantum Electron. 31, 317-325 (1995). [CrossRef]
  35. D. Kopf, K. J. Weingarten, G. Zhang, M. Moser, M. A. Emanuel, R. J. Beach, J. A. Skidmore, and U. Keller, “High-average-power diode-pumped femtosecond Cr:LiSAF lasers,” Appl. Phys. B 65, 235-243 (1997). [CrossRef]
  36. R. Holzwarth, M. Zimmermann, T. Udem, T. W. Hansch, P. Russbuldt, K. Gabel, R. Poprawe, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “White-light frequency comb generation with a diode-pumped Cr:LiSAF laser,” Opt. Lett. 26, 1376-1378 (2001). [CrossRef]
  37. H. Tsuchida, “Timing-jitter reduction of a mode-locked Cr:LiSAF laser by simultaneous control of cavity length and pump power,” Opt. Lett. 25, 1475-1477 (2000). [CrossRef]
  38. R. Mellish, N. P. Barry, S. C. W. Hyde, R. Jones, P. M. W. French, J. R. Taylor, C. J. van der Poel, and A. Valster, “Diode-pumped Cr:LiSAF all-solid-state femtosecond oscillator and regenerative amplifier,” Opt. Lett. 20, 2312-2314 (1995). [CrossRef] [PubMed]
  39. P. Beaud, M. Richardson, E. J. Miesak, and B. H. T. Chai, “8-TW90-fs Cr:LiSaF laser,” Opt. Lett. 18, 1550-1552 (1993). [CrossRef] [PubMed]
  40. T. A. Samtleben and E. Hulliger, “LiCaAlF6 and LiSrAlF6: tunable solid state laser host materials,” Opt. Lasers Eng. 43, 251-262 (2005). [CrossRef]
  41. R. E. Samad, S. L. Baldochi, G. E. C. Nogueira, and N. D. Vieira, “30 WCr:LiSrAlF6 flashlamp-pumped pulsed laser,” Opt. Lett. 32, 50-52 (2007). [CrossRef]
  42. D. Kopf, U. Keller, M. A. Emanuel, R. J. Beach, and J. A. Skidmore, “1.1-W cw Cr:LiSAF laser pumped by a 1-cm diode array,” Opt. Lett. 22, 99-101 (1997). [PubMed]
  43. F. Balembois, M. Gaignet, F. Louradour, V. Couderc, A. Barthelemy, P. Georges, and A. Brun, “Tunable picosecond UV source at 10 kHz based on an all-solid-state diode-pumped laser system,” Appl. Phys. B 65, 255-258 (1997). [CrossRef]
  44. F. Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges, and A. Brun, “Theoretical and experimental investigations of small-signal gain for a diode-pumped Q-switched Cr:LiSAF laser,” IEEE J. Quantum Electron. 33, 269-278 (1997). [CrossRef]
  45. Y. Nagumo, N. Taguchi, and H. Inaba, “Widely tunable continuous-wave Cr3+:LiSrAlF6 ring laser from 800to936 nm,” Appl. Opt. 37, 4929-4932 (1998). [CrossRef]
  46. R. Knappe, K. J. Boller, and R. Wallenstein, “Single-mode continuous-wave Cr3+:LiSaF ring laser from 800to936 nm ring laser-pumped by an injection-locked 670-nm broad-area diode-laser,” Opt. Lett. 20, 1988-1990 (1995). [CrossRef] [PubMed]
  47. B. Agate, E. U. Rafailov, W. Sibbett, S. M. Saltiel, K. Koynov, M. Tiihonen, S. H. Wang, F. Laurell, P. Battle, T. Fry, T. Roberts, and E. Noonan, “Portable ultrafast blue light sources designed with frequency doubling in KTP and KNbO3,” IEEE J. Sel. Top. Quantum Electron. 10, 1268-1276 (2004). [CrossRef]
  48. A. Miller, P. LiKamWa, B. H. T. Chai, and E. W. Van Stryland, “Generation of 150-fs tunable pulses in Cr:LiSAF6,” Opt. Lett. 17, 195-197 (1992). [CrossRef] [PubMed]
  49. F. Balembois, P. Georges, and A. Brun, “Quasi-continuous-wave and actively mode-locked diode-pumped Cr3+:LiSrAlF6 laser,” Opt. Lett. 18, 1730-1732 (1993). [CrossRef] [PubMed]
  50. P. M. W. French, R. Mellish, and J. R. Taylor, “Mode-locked all-solid-state diode-pumped Cr:LiSAF laser,” Opt. Lett. 18, 1934-1936 (1993). [CrossRef] [PubMed]
  51. N. H. Rizvi, P. M. W. French, and J. R. Taylor, “Generation of 33-fs pulses from a passively mode-locked Cr3+:LiSrAlF6 laser,” Opt. Lett. 17, 1605-1607 (1992). [CrossRef] [PubMed]
  52. S. Tsuda, W. H. Knox, and S. T. Cundiff, “High efficiency diode pumping of a saturable Bragg reflector-mode-locked Cr:LiSAF femtosecond laser,” Appl. Phys. Lett. 69, 1538-1540 (1996). [CrossRef]
  53. J. M. Hopkins, G. J. Valentine, W. Sibbett, J. A. der Au, F. Morier-Genoud, U. Keller, and A. Valster, “Efficient, low-noise, SESAM-based femtosecond Cr3+:LiSrAlF6 laser,” Opt. Commun. 154, 54-58 (1998). [CrossRef]
  54. R. P. Prasankumar, Y. Hirakawa, A. M. J. Kowalevicz, F. X. Kærtner, J. G. Fujitimo, and W. H. Knox, “An extended cavity femtosecond Cr:LiSAF laser pumped by low cost diode lasers,” Opt. Express 11, 1265-1269 (2003). [CrossRef] [PubMed]
  55. X. Guo-Qiang, W. Tao, Z. He-Yuan, and Q. Lie-Jia, “Diode-pumped tunable laser with dual Cr:LiSAF rods,” Chin. Phys. 15, 547-551 (2006). [CrossRef]
  56. D. Klimm, R. Uecker, and P. Reiche, “Melting behavior and growth of colquiriite laser crystals,” Cryst. Res. Technol. 40, 352-358 (2005). [CrossRef]
  57. G. Lacayo, I. Hahnert, D. Klimm, P. Reiche, and W. Neumann, “Transmission electron microscope study of secondary phases in Cr3+:LiCaAlF6 single crystals,” Cryst. Res. Technol. 34, 1221-1227 (1999). [CrossRef]
  58. M. Stalder, B. H. T. Chai, and M. Bass, “Flashlamp pumped Cr:LiSrAIF6 laser,” Appl. Phys. Lett. 58, 216-218 (1991). [CrossRef]
  59. M. Stalder, M. Bass, and B. H. T. Chai, “Thermal quenching of fluoresence in chromium-doped fluoride laser crystals,” J. Opt. Soc. Am. B 9, 2271-2273 (1992). [CrossRef]
  60. V. Pilla, T. Catunda, S. M. Lima, A. N. Medina,M. L. Baesso, H. P. Jenssen, and A. Cassanho, “Thermal quenching of the fluorescence quantum efficiency in colquiriite crystals measured by thermal lens spectrometry,” J. Opt. Soc. Am. B 21, 1784-1791 (2004). [CrossRef]
  61. S. Uemura and K. Miyazaki, “Thermal chracteristics of a continuous-wave Cr:LiSAF laser,” Jpn. J. Appl. Phys., Part 1 36, 4312-4315 (1997). [CrossRef]
  62. D. Kopf, J. A. Derau, U. Keller, G. L. Bona, and P. Roentgen, “400-Mw continuous-wave diode-pumpedCr:LiSAF laser-based on a power-scalable concept,” Opt. Lett. 20, 1782-1784 (1995). [CrossRef] [PubMed]
  63. K. M. Gabel, P. Russbuldt, R. Lebert, and A. Valster, “Diode pumped Cr+3:LiCAF fs-laser,” Opt. Commun. 157, 327-334 (1998). [CrossRef]
  64. P. LiKamWa, B. H. T. Chai, and A. Miller, “Self-mode-locked Cr3+:LiCaAlF6 laser,” Opt. Lett. 17, 1438-1440 (1992). [CrossRef] [PubMed]
  65. U. Demirbas, A. Sennaroglu, A. Benedick, A. Siddiqui, F. X. Kärtner, and J. G. Fujimoto, “Diode-pumped, high-average power femtosecond Cr+3:LiCAF laser,” Opt. Lett. 32, 3309-3311 (2007). [CrossRef] [PubMed]
  66. J. K. Jabczynski, W. Zendzian, Z. Mierczyk, and Z. Frukacz, “Chromium-doped LiCAF laser passively Q-switched with a V3+:YAG crystal,” Appl. Opt. 40, 6638-6645 (2001). [CrossRef]
  67. Y.-K. Kuo, M.-F. Huang, and M. Birnbaum, “Tunable Cr4+:YSO Q-switched Cr:LiCAF laser,” IEEE J. Quantum Electron. 31, 657-663 (1995). [CrossRef]
  68. P. Beaud, M. C. Richardson, Y. F. Chen, and B. H. T. Chai, “Optical amplification characteristics of Cr-LiSAF andCr-LiCAF under flashlamp-pumping,” IEEE J. Quantum Electron. 30, 1259-1266 (1994). [CrossRef]
  69. Y. K. Kuo, Y. Yang, and M. Birnbaum, “Cr4+Gd3Sc2Ga3O12 passive Q-switch for the Cr3+LiCaAlF6 laser,” Appl. Phys. Lett. 64, 2329-2331 (1994). [CrossRef]
  70. Y. C. Wang, C. E. Huang, L. S. Chen, and Z. Y. Fang, “Crystal growth of Cr3+:LiCaAlF6 by Bridgman technique,” J. Cryst. Growth 167, 176-179 (1996). [CrossRef]
  71. A. Isemann, P. Wessels, and C. Fallnich, “Directly diode-pumped colquiriite regenerative amplifiers,” Opt. Commun. 260, 211-222 (2006). [CrossRef]
  72. A. Isemann, H. Hundertmark, and C. Fallnich, “Diode-pumped Cr:LiCAF fs regenerative amplifier system seeded by an Er-doped mode-locked fiber laser,” Appl. Phys. B 74, 299-306 (2002). [CrossRef]
  73. J. J. Deyoreo, L. J. Atherton, and D. H. Roberts, “Elimination of scattering centers from Cr-LiCaAlF6,” J. Cryst. Growth 113, 691-697 (1991). [CrossRef]
  74. L. J. Atherton, S. A. Payne, and C. D. Brandle, “Oxide and fluoride laser crystals,” Annu. Rev. Mater. Sci. 23, 453-502 (1993). [CrossRef]
  75. D. Klimm and P. Reiche, “Ternary colquiriite type fluorides as laser hosts,” Cryst. Res. Technol. 34, 145-152 (1999). [CrossRef]
  76. D. Klimm and P. Reiche, “Nonstoichiometry of the new laser host LiCaAlF6,” Cryst. Res. Technol. 33, 409-416 (1998). [CrossRef]
  77. D. Klimm, G. Lacayo, and P. Reiche, “Growth of Cr:LiCaAlF6 and Cr:LiSrAlF6 by the Czochralski method,” J. Cryst. Growth 210, 683-693 (2000). [CrossRef]
  78. J. M. Eichenholz and M. Richardson, “Measurement of thermal lensing in Cr3+-doped colquiriites,” IEEE J. Quantum Electron. 34, 910-919 (1998). [CrossRef]
  79. B. W. Woods, S. A. Payne, J. E. Marion, R. S. Hughes, and L. E. Davis, “Thermomechanical and thermooptic properties of the LiCaAlF6-Cr3+ laser material,” J. Opt. Soc. Am. B 8, 970-977 (1991). [CrossRef]
  80. A. Sennaroglu, “Analysis and optimization of lifetime thermal loading in continuous-wave Cr4+-doped solid-state lasers,” J. Opt. Soc. Am. B 18, 1578-1586 (2001). [CrossRef]
  81. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. derAu, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435-453 (1996). [CrossRef]
  82. S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron. 2, 454-464 (1996). [CrossRef]
  83. D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20, 277-278 (1966). [CrossRef]
  84. J. A. Caird, L. G. DeShazer, and J. Nella, “Characteristics of room-temperature 2.3-μm laser emission from Tm3+ in YAG and YAlO3,” IEEE J. Quantum Electron. QE-11, 874-881 (1975). [CrossRef]
  85. S. A. Payne, L. L. Chase, L. J. Atherton, J. A. Caird, W. L. Kway, M. D. Shinn, R. S. Hughes, and L. K. Smith, “Properties and performance of the LiCaAlF6:Cr3+ laser material,” in SPIE Solid State Lasers (SPIE, 1990), 84-93.
  86. H. W. H. Lee, S. A. Payne, and L. L. Chase, “Excited-state absorption of Cr+3 in LiCaAlF6: effects of asymmetric distortions and intensity selection rules,” Phys. Rev. B 39, 8907-8914 (1989). [CrossRef]
  87. P. Beaud, Y.-F. Chen, B. H. T. Chai, and M. C. Richardson, “Gain properties of LiSrAlF6:Cr3+,” Opt. Lett. 17, 1064-1066 (1992). [CrossRef] [PubMed]
  88. B. C. Weber and A. Hirth, “Efficient single-pulse emission with submicrosecond duration from a Cr:LiSAF laser,” Opt. Commun. 128, 158-165 (1996). [CrossRef]
  89. B. C. Weber and A. Hirth, “Presentation of a new and simple technique of Q-switching with a LiSrAlF6:Cr3+ oscillator,” Opt. Commun. 149, 301-306 (1998). [CrossRef]
  90. M. Fromager and K. A. Ameur, “Modeling of the self-Q-switching behavior of lasers based on chromium-doped active material,” Opt. Commun. 191, 305-314 (2001). [CrossRef]
  91. N. Passilly, M. Fromager, K. A. Ameur, R. Moncorge, J. L. Doualan, A. Hirth, and G. Quarles, “Measurement of the index-inversion coupling contributing to the time-dependent nonlinear lens effect in a Cr3+:LiSAF laser,” J. Phys. IV 119, 257-258 (2004).
  92. N. Passilly, M. Fromager, K. Ait-Ameur, R. Moncorge, J. L. Doualan, A. Hirth, and G. Quarles, “Experimental and theoretical investigation of a rapidly varying nonlinear lensing effect observed in a Cr3+:LiSAF laser,” J. Opt. Soc. Am. B 21, 531-538 (2004). [CrossRef]
  93. N. Passilly, M. Fromager, and K. Ait-Ameur, “Improvement of the self-Q-switching behavior of a Cr:LiSrAlF6 laser by use of binary diffractive optics,” Appl. Opt. 43, 5047-5059 (2004). [CrossRef] [PubMed]
  94. V. Pilla, T. Catunda, H. P. Jenssen, and A. Cassanho, “Fluorescence quantum efficiency measurements in the presence of Auger upconversion by the thermal lens method,” Opt. Lett. 28, 239-241 (2003). [CrossRef] [PubMed]
  95. F. X. Kärtner, I. D. Jung, and U. Keller, “Soliton mode-locking with saturable absorbers,” IEEE J. Sel. Top. Quantum Electron. 2, 540-556 (1996). [CrossRef]
  96. F. Balembois, F. Druon, F. Falcoz, P. Georges, and A. Brun, “Performances of Cr:LiSrAlF6 and Cr:LiSrGaF6 for continuous-wave diode-pumped Q-switched operation,” Opt. Lett. 22, 387-389 (1997). [CrossRef] [PubMed]
  97. H. S. Wang, P. L. K. Wa, J. L. Lefaucheur, B. H. T. Chai, and A. Miller, “Cw and self-mode-locking performance of a red pumped Cr:LiSr0.8Ca0.2AlF6 laser,” Opt. Commun. 110, 679-688 (1994). [CrossRef]
  98. S. N. Tandon, J. T. Gopinath, H. M. Shen, G. S. Petrich, L. A. Kolodziejski, F. X. Kärtner, and E. P. Ippen, “Large-area broadband saturable Bragg reflectors by use of oxidized AlAs,” Opt. Lett. 29, 2551-2553 (2004). [CrossRef] [PubMed]
  99. S. N. Tandon, J. T. Gopinath, A. A. Erchak, G. S. Petrich, L. A. Kolodziejski, and E. P. Ippen, “Large-area oxidation of AlAs layers for dielectric stacks and thick buried oxides,” J. Electron. Mater. 33, 774-779 (2004). [CrossRef]
  100. S. N. Tandon, J. T. Gopinath, H. M. Shen, G. S. Petrich, L. A. Kolodziejski, F. X. Kärtner, and E. P. Ippen, “Broadband saturable Bragg reflectors from the infrared to visible using oxidized AIAs,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CThV5. [PubMed]
  101. U. Demirbas and A. Sennaroglu, “Intracavity-pumped Cr2+:ZnSe laser with ultrabroad tuning range between 1880 and 3100 nm,” Opt. Lett. 31, 2293-2295 (2006). [CrossRef] [PubMed]
  102. A. Sennaroglu and J. G. Fujimoto, “Design criteria for Herriott-type multi-pass cavities for ultrashort pulse lasers,” Opt. Express 11, 1106-1113 (2003). [CrossRef] [PubMed]
  103. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16, 46-56 (1999). [CrossRef]
  104. F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, “Control of solid-state laser dynamics by semiconductor devices,” Opt. Eng. (Bellingham) 34, 2024-2036 (1995). [CrossRef]
  105. U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831-838 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited