OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 1 — Jan. 1, 2009
  • pp: 96–100

Controlling thermal radiation by photonic quantum well structure with zero-averaged-refractive-index gap

Bo Tao and Li Fu-Li  »View Author Affiliations

JOSA B, Vol. 26, Issue 1, pp. 96-100 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (306 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Based on Kirchoff’s second law, we investigate the spectral-directional thermal emissivity of a photonic quantum well (PQW) structure with a zero-averaged-refractive-index (zero- n ¯ ) gap coating on an absorbing substrate. It is shown that the thermal emission through tunneling modes having frequencies in the zero- n ¯ gap is not only weakly dependent on the emission angle and polarization state but also insensitive to the unit-cell size scaling of the barrier photonic crystal. More importantly, the PQW structure promises the frequency-selective thermal emission for both TE and TM polarization states along a well-defined direction. This may result in designing thermal antennas.

© 2008 Optical Society of America

OCIS Codes
(030.1670) Coherence and statistical optics : Coherent optical effects
(350.2450) Other areas of optics : Filters, absorption
(160.3918) Materials : Metamaterials
(160.5298) Materials : Photonic crystals

ToC Category:

Original Manuscript: September 16, 2008
Manuscript Accepted: October 17, 2008
Published: December 16, 2008

Bo Tao and Li Fu-Li, "Controlling thermal radiation by photonic quantum well structure with zero-averaged-refractive-index gap," J. Opt. Soc. Am. B 26, 96-100 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  3. C. M. Bowden, J. P. Dowling, and H. O. Everitt, “Development and applications of materials exhibiting photonic band gaps: introduction,” J. Opt. Soc. Am. B 10, 280 (1993).
  4. S. Johnson and J. D. Joannopoulos, Photonic Crystals: The Road from Theory to Practice (Kluwer, 2002).
  5. B. J. Lee, C. J. Fu, and Z. M. Zhang, “Coherent thermal emission from one-dimensional photonic crystals,” Appl. Phys. Lett. 87, 071904 (2005). [CrossRef]
  6. I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72, 075127 (2005). [CrossRef]
  7. C. M. Cornelius and J. P. Dowling, “Modification of Planck blackbody radiation by photonic band-gap structures,” Phys. Rev. A 59, 4736-4746 (1999). [CrossRef]
  8. S.-Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83, 380-382 (2003). [CrossRef]
  9. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of permittivity and permeability,” Sov. Phys. Usp. 10, 509-513 (1968). [CrossRef]
  10. J. Li, L. Zhou, C. T. Chan, and P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys. Rev. Lett. 90, 083901 (2003). [CrossRef] [PubMed]
  11. A. Narayanaswamy and G. Chen, “Thermal emission control with one-dimensional metallodielectric photonic crystals,” Phys. Rev. B 70, 125101 (2004). [CrossRef]
  12. A. Battula and S. C. Chen, “Monochromatic polarized coherent emitter enhanced by surface plasmons and a cavity resonance,” Phys. Rev. B 74, 245407 (2006). [CrossRef]
  13. P. Ben-Abdallah and B. Ni, “Single-defect Bragg stacks for high-power narrow-band thermal emission,” J. Appl. Phys. 97, 104910 (2005). [CrossRef]
  14. D. L. C. Chan, M. Soljačić, and J. D. Joannopoulos, “Thermal emission and design in one-dimensional periodic metallic photonic crystal slabs,” Phys. Rev. E 74, 016609 (2006). [CrossRef]
  15. S. Enoch, J.-J. Simon, L. Escoubas, Z. Elalmy, F. Lemarquis, P. Torchio, and G. Albrand, “Simple layer-by-layer photonic crystal for the control of thermal emission,” Appl. Phys. Lett. 86, 261101 (2005). [CrossRef]
  16. M. Maksimović and Z. Jakšić, “Modification of thermal radiation by periodical structures containing negative refractive index metamaterials,” Phys. Lett. A 342, 497-503 (2005). [CrossRef]
  17. M. Maksimović and Z. Jakšić, “Emittance and absorptance tailoring by negative refractive index metamaterial based Cantor multilayers,” J. Opt. A, Pure Appl. Opt. 8, 355-362 (2006). [CrossRef]
  18. F. F. de Medeiros, E. L. Albuquerque, M. S. Vasconcelos, and P. W. Mauriz, “Thermal radiation in quasiperiodic photonic crystals with negative refractive index,” J. Phys. Condens. Matter 19, 496212 (2007). [CrossRef]
  19. J. Zi, J. Wan, and C. Zhang, “Large frequency range of negligible transmission in one-dimensional photonic quantum well structures,” Appl. Phys. Lett. 73, 2084-2086 (1998). [CrossRef]
  20. F. Qiao, C. Zhang, J. Wan, and J. Zi, “Photonic quantum-well structures: multiple channeled filtering phenomena,” Appl. Phys. Lett. 77, 3698-3700 (2000). [CrossRef]
  21. H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, and S. Y. Zhu, “Omnidirectional gap and defect mode of one-dimensional photonic crystals containing negative-index materials,” Appl. Phys. Lett. 83, 5386-5388 (2003). [CrossRef]
  22. K. Y. Xu, X. G. Zheng, C. L. Li, and W. L. She, “Design of omnidirectional and multiple channeled filters using one-dimensional photonic crystals containing a defect layer with a negative refractive index,” Phys. Rev. E 71, 066604 (2005). [CrossRef]
  23. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773-4776 (1996). [CrossRef] [PubMed]
  24. P. Pigeat, D. Rouzel, and B. Weber, “Calculation of thermal emissivity for thin films by a direct method,” Phys. Rev. B 57, 9293-9300 (1998). [CrossRef]
  25. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).
  26. M. Centini, C. Sibilia, M. Scalora, G. D'Aguanno, M. Bertolotti, M. J. Bloemer, C. M. Bowden, and I. Nefedov, “Dispersive properties of finite, one-dimensional photonic band gap structures: applications to nonlinear quadratic interactions,” Phys. Rev. E 60, 4891-4898 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited