OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 10 — Oct. 1, 2009
  • pp: 1862–1868

Enhanced self-Kerr nonlinearity in spontaneous emission

Xiang-an Yan, Li-qiang Wang, Bao-yin Yin, and Jian-ping Song  »View Author Affiliations

JOSA B, Vol. 26, Issue 10, pp. 1862-1868 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (424 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a new scheme for achieving giant enhancement of the self-Kerr nonlinearity in a four-level Y-type atom with two highest nearly degenerate lying levels. We have found that, owing to the quantum interference effect that originates from spontaneous emission from two closely lying levels, large Kerr nonlinearity can be achieved under appropriate conditions. In particular, in addition to the amplitudes, the phases of the applied fields also affect the Kerr nonlinearity. We attribute the enhancement of Kerr nonlinearity mainly to the presence of some extra atomic coherence terms induced by the spontaneously generated coherence. We present a physical understanding of our numerical results using analytical explanation.

© 2009 Optical Society of America

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(270.1670) Quantum optics : Coherent optical effects
(270.6620) Quantum optics : Strong-field processes

ToC Category:
Nonlinear Optics

Original Manuscript: May 28, 2009
Revised Manuscript: August 11, 2009
Manuscript Accepted: August 12, 2009
Published: September 4, 2009

Xiang-an Yan, Li-qiang Wang, Bao-yin Yin, and Jian-ping Song, "Enhanced self-Kerr nonlinearity in spontaneous emission," J. Opt. Soc. Am. B 26, 1862-1868 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Javanainen, “Effect of state superpositions created by spontaneous emission on laser-driven transitions,” Europhys. Lett. 17, 407-412 (1992). [CrossRef]
  2. P. Zhou and S. Swain, “Ultranarrow spectral lines via quantum interference,” Phys. Rev. Lett. 77, 3995-3998 (1996). [CrossRef] [PubMed]
  3. R. M. Whitley and C. R. Stroud, Jr., “Double optical resonance,” Phys. Rev. A 14, 1498-1512 (1976). [CrossRef]
  4. Z. Ficek, B. J. Dalton, and P. L. Knight, “Fluorescence intensity and squeezing in 3-level atom-ladder case,” Phys. Rev. A 51, 4062-4065 (1995). [CrossRef] [PubMed]
  5. H. M. Ma, S. Q. Gong, C. P. Liu, Z. Sun, and Z. Xu, “Effects of spontaneous emission-induced coherence on population inversion in a ladder-type atomic system,” Opt. Commun. 223, 97-101 (2003). [CrossRef]
  6. W. H. Xu, J. H. Wu, and J. Y. Gao, “Effects of spontaneously generated coherence on transient process in a Λ system,” Phys. Rev. A 66, 063812 (2002). [CrossRef]
  7. S. Menon and G. S. Agarwal, “Gain components in the Autler-Townes doublet from quantum interferences in decay channels,” Phys. Rev. A 61, 013807 (1999). [CrossRef]
  8. S. Q. Gong, Y. Li, S. D. Du, and Z. Z. Xu, “Unexpected population inversion via spontaneously generated coherence of a lambda system,” Phys. Rev. A 259, 43-48 (1999).
  9. J. Evers, D. Bullock, and C. H. Keitel, “Dark state suppression and narrow fluorescent feature in a laser-driven Λ atom,” Opt. Commun. 209, 173-179 (2002). [CrossRef]
  10. E. Paspalakis, S. Q. Gong, and P. L. Knight, “Spontaneous emission-induced coherence effects in absorption and dispersion of a V-type three-level atom,” Opt. Commun. 152, 293-297 (1998). [CrossRef]
  11. L. Li, X. Wang, J. Yang, G. Lazarov, J. Qi, and A. M. Lyyra, “Comment on “Experimental observation of spontaneous emission cancellation,” Phys. Rev. Lett. 84, 4016-4016 (2000). [CrossRef] [PubMed]
  12. J. Wang, H. M. Wiseman, and Z. Ficek, “Quantum interference in the fluorescenceof a molecular system,” Phys. Rev. A 62, 013818 (2000). [CrossRef]
  13. P. Dong and S. H. Tang, “Absorption spectrum of a V-type three-level atom driven by a coherent field,” Phys. Rev. A 65, 033816 (2002). [CrossRef]
  14. A. Joshi, W. G. Yang, and M. Xiao, “Effect of spontaneously generated coherence on optical bistability in three-level Λ-type atomic system,” Phys. Lett. A 315, 203-207 (2003). [CrossRef]
  15. C. P. Liu, S. Q. Gong, X. J. Fan, and Z. Z. Xu, “Phase control of spontaneously generated coherence induced bistability,” Opt. Commun. 239, 383-389 (2004). [CrossRef]
  16. H. Lee, P. Polynkin, M. O. Scully, and S. Y. Zhu, “Quenching of spontaneous emission via quantum interference,” Phys. Rev. A 55, 4454-4465 (1997). [CrossRef]
  17. S. Y. Zhu and M. O. Scully, “Spectral line elimination and spontaneous emission cancellation via quantum interference,” Phys. Rev. Lett. 76, 388-391 (1996). [CrossRef] [PubMed]
  18. A. G. Litvak and M. D. Tokman, “Electromagnetically induced transparency in ensembles of classical oscillators,” Phys. Rev. Lett. 88, 095003 (2002). [CrossRef] [PubMed]
  19. E. Arimondo, “Coherent population trapping in laser spectroscopy,” Progress in Optics, E.Wolf, ed. (Amsterdam, 1996), pp. 257-354. [CrossRef]
  20. J. H. Wu and J. Y. Gao, “Phase control of the probe gain without population inversion in a four-level V model,” J. Opt. Soc. Am. B 19, 2863-2866 (2002). [CrossRef]
  21. C. P. Liu, S. Q. Gong, X. J. Fan, S. Q. Jin, and Z. Z. Xu, “Effect of phase on the dynamic evolution of a Λ system with spontaneously generated coherence,” Opt. Commun. 254, 368-345 (2005). [CrossRef]
  22. H. Sun, Y. P. Niu, S. Q. Jin, and S. Q. Gong, “Phase control of the Kerr nonlinearity in electromagnetically induced transparency media,” J. Phys. B 41, 065504 (2008). [CrossRef]
  23. M. A. Antón, O. G. Calderón, and F. Carreño, “Spontaneously generated coherence effects in a laser-driven four-level atomic system,” Phys. Rev. A 72, 023809 (2005). [CrossRef]
  24. B. P. Hou, S. J. Wang, W. L. Yu, and W. L. Sun, “Effect of vacuum-induced coherence on single- and two-photon absorption in a four-level Y-type atomic system,” Phys. Rev. A 69, 053805 (2004). [CrossRef]
  25. H. R. Xia, C. Y. Ye, and S. Y. Zhu, “Experimental observation of spontaneous emission cancellation,” Phys. Rev. Lett. 77, 1032-1034 (1996). [CrossRef] [PubMed]
  26. P. R. Berman, “Analysis of dynamical suppression of spontaneous emission,” Phys. Rev. A 58, 4886-4891 (1998). [CrossRef]
  27. M. V. Gurudev, J. Cheng, B. Li, X. D. Xu, X. Q. Li, P. R. Berman, D. G. Steel, A. S. Bracker, and L. J. Sham, “Stimulated and spontaneous optical generation fo electron spin coherence in charged GaAs quantum dots,” Phys. Rev. Lett. 94, 227403 (2005). [CrossRef]
  28. Z. Ficek and S. Swain, “Simulating quantum interference in a three-level system with perpendicular transition dipole moments,” Phys. Rev. A 69, 023401 (2004). [CrossRef]
  29. A. Imamoglu, H. Schmidt, G. Woods, and M. Deutsch, “Strongly interacting photons in a nonlinear cavity,” Phys. Rev. Lett. 79, 1467-1470 (1997). [CrossRef]
  30. S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611-4614 (1999). [CrossRef]
  31. S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81, 3611-3614 (1998). [CrossRef]
  32. Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditions phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710-4714 (1995). [CrossRef] [PubMed]
  33. H. Kang and Y. F. Zhu, “Observation of large Kerr nonlinearity at low light intensities,” Phys. Rev. Lett. 91, 093601 (2003). [CrossRef] [PubMed]
  34. R. Arun, “Interference-induced splitting of resonances in spontaneous emission,” Phys. Rev. A 77, 033820 (2008). [CrossRef]
  35. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge Univ. Press, 1997).
  36. G. S. Agarwal, Quantum Optics (Springer-Verlag, 1974).
  37. Y. P. Niu and S. Q. Gong, “Enhancing Kerr nonlinearity via spontaneously generated coherence,” Phys. Rev. A 73, 053811(6) (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited