OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry Van Driel
  • Vol. 26, Iss. 10 — Oct. 1, 2009
  • pp: 1869–1874

Describing second-order spatiotemporal couplings in ultrashort pulses using correlation coefficient

Shuguang Zeng, Youquan Dan, and Bin Zhang  »View Author Affiliations


JOSA B, Vol. 26, Issue 10, pp. 1869-1874 (2009)
http://dx.doi.org/10.1364/JOSAB.26.001869


View Full Text Article

Enhanced HTML    Acrobat PDF (312 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A second-order correlation coefficient is defined to estimate the severity of second-order spatiotemporal couplings. The correlation coefficient is scale invariant, normalized, dimensionless, etc. Using this correlation coefficient, the spatial chirp of ultrashort pulsed Gaussian beams is studied. It can be shown that the spatial chirp of ultrashort pulsed Gaussian beams depends on the pulse width, spectrum shape, and local frequency shift characteristics, and different types of ultrashort pulsed Gaussian beams exhibit different second-order spatiotemporal couplings characteristics.

© 2009 Optical Society of America

OCIS Codes
(320.5550) Ultrafast optics : Pulses
(320.7120) Ultrafast optics : Ultrafast phenomena

ToC Category:
Ultrafast Optics

History
Original Manuscript: June 5, 2009
Revised Manuscript: July 30, 2009
Manuscript Accepted: July 31, 2009
Published: September 9, 2009

Citation
Shuguang Zeng, Youquan Dan, and Bin Zhang, "Describing second-order spatiotemporal couplings in ultrashort pulses using correlation coefficient," J. Opt. Soc. Am. B 26, 1869-1874 (2009)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-26-10-1869


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Akturk, X. Gu, P. Gabolde, and R. Trebino, “The general theory of first-order spatiotemporal distortions of Gaussian pulses and beams,” Opt. Express 13, 8642-8661 (2005). [CrossRef] [PubMed]
  2. R. W. Ziolkowski and J. B. Judkins, “Propagation characteristics of ultrawide-bandwidth pulsed Gaussian beams,” J. Opt. Soc. Am. A 9, 2021-2030 (1992). [CrossRef]
  3. M. A. Porras, “Ultrashort pulsed Gaussian light beams,” Phys. Rev. E 58, 1086-1093 (1998). [CrossRef]
  4. Z. Wang, Z. Zhang, Z. Xu, and Q. Lin, “Space-time profiles of an ultrashort pulsed gaussian beam,” IEEE J. Quantum Electron. 33, 566-573 (1997). [CrossRef]
  5. M. A. Porras, “Pulse correction to monochromatic light-beam propagation,” Opt. Lett. 26, 44-46 (2001). [CrossRef]
  6. M. A. Porras, “Diffraction effects in few-cycle optical pulses,” Phys. Rev. E 65, 026606 (2002). [CrossRef]
  7. J. C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena, 2nd ed. (Academic, 2006).
  8. P. Gabolde, D. Lee, S. Akturk, and R. Trebino, “Describing first-order spatiotemporal distortions in ultrashort pulses using normalized parameters,” Opt. Express 15, 242-251 (2007). [CrossRef] [PubMed]
  9. S. Akturk, M. Kimmel, P. O'Shea, and R. Trebino, “Measuring spatial chirp in ultrashort pulses using single-shot frequency-resolved optical gating,” Opt. Express 11, 68-78 (2003). [CrossRef] [PubMed]
  10. X. Gu, S. Akturk, and R. Trebino, “Spatial chirp in ultrafast optics,” Opt. Commun. 242, 599-604 (2004). [CrossRef]
  11. K. Varju, A. P. Kovacs, G. Kurdi, and K. Osvay, “High-precision measurement of angular dispersion in a CPA laser,” Appl. Phys. B: Lasers Opt. B74, 259-263 (2002). [CrossRef]
  12. K. Varju, A. P. Kovacs, and K. Osvay, “Angular dispersion of femtosecond pulses in a Gaussian beam,” Opt. Lett. 27, 2034-2036 (2002). [CrossRef]
  13. S. Akturk, M. Kimmel, P. O'Shea, and R. Trebino, “Measuring pulse-front tilt in ultrashort pulses using GRENOUILLE,” Opt. Express 11, 491-501 (2003). [CrossRef] [PubMed]
  14. S. Akturk, X. Gu, E. Zeek, and R. Trebino, “Pulse-front tilt caused by spatial and temporal chirp,” Opt. Express 12, 4399-4410 (2004). [CrossRef] [PubMed]
  15. C. Dorrer, E. M. Kosik, and I. A. Walmsley, “Spatiotemporal characterization of the electric field of ultrashort optical pulses using two-dimensional shearing interferometry,” Appl. Phys. B: Lasers Opt. 74, 209-217 (2002). [CrossRef]
  16. G. P. Agrawal, “Far-field diffraction of pulsed optical beams in dispersive media,” Opt. Commun. 167, 15-22 (1999). [CrossRef]
  17. O. E. Martinez, “Grating and prism compressors in the case of finite beam size,” J. Opt. Soc. Am. B 3, 929-934 (1986). [CrossRef]
  18. T. M. Apostol, Mathematical Analysis (Addison-Wesley, 1974).
  19. O. Svelto, Principles of Lasers, 4th ed. (Plenum, 1998).
  20. S. A. Ponomarenko and G. P. Agrawal, “Phase-space quality factor for ultrashort pulsed beams,” Opt. Lett. 33, 767-769 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited